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Abstract—Nowadays, dynamic testing tools have significantly
expedited the discovery of bugs in the Linux kernel. When unveil-
ing kernel bugs, they automatically generate reports, specifying
the errors the Linux encounters. The error in the report implies
the possible exploitability of the corresponding kernel bug. As a
result, many security analysts use the manifested error to infer a
bug’s exploitability and thus prioritize their exploit development
effort. However, using the error in the report, security researchers
might underestimate a bug’s exploitability. The error exhibited in
the report may depend upon how the bug is triggered. Through
different paths or under different contexts, a bug may manifest
various error behaviors implying very different exploitation
potentials. This work proposes a new kernel fuzzing technique
to explore all the possible error behaviors that a kernel bug
might bring about. Unlike conventional kernel fuzzing techniques
concentrating on kernel code coverage, our fuzzing technique is
more directed towards the buggy code fragment. It introduces
an object-driven kernel fuzzing technique to explore various
contexts and paths to trigger the reported bug, making the bug
manifest various error behaviors. With the newly demonstrated
errors, security researchers could better infer a bug’s possible
exploitability. To evaluate our proposed technique’s effectiveness,
efficiency, and impact, we implement our fuzzing technique as a
tool GREBE and apply it to 60 real-world Linux kernel bugs. On
average, GREBE could manifest 2+ additional error behaviors for
each of the kernel bugs. For 26 kernel bugs, GREBE discovers
higher exploitation potential. We report to kernel vendors some
of the bugs – the exploitability of which was wrongly assessed
and the corresponding patch has not yet been carefully applied
– resulting in their rapid patch adoption.

I. INTRODUCTION

Today, Linux powers a wide variety of computing systems.
To improve its security, researchers and analysts introduced au-
tomated kernel fuzzing techniques and various debugging/san-
itization features. With their facilitation, it becomes easier
for security researchers and kernel developers to pinpoint a
bug in the Linux kernel. However, it is still challenging to
determine whether bug conditions are sufficient to represent
a security vulnerability. For example, a bug that demonstrates
out-of-bound error behaviors usually implies a higher chance
to exploit than those that exhibit null pointer dereference error
behaviors. As such, both our survey result (shown in A) and
previous research [1], [2], [3] indicate that the manifested error
behaviors of bugs play a critical role in prioritizing exploit
development efforts.
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In practice, when existing fuzzing tools identify a kernel
bug, the manifested error behavior of the bug may be one
of its many possible error behaviors. Its other possible error
behaviors could be far away from the one that has been already
exposed. For example, as we will elaborate in Section II, by
following different paths or execution contexts to trigger a
kernel bug, we can make a kernel bug exhibit not only a less-
likely-to-exploit GPF (General Protection Fault) error behavior
but also a highly-likely-to-exploit UAF (Use-After-Free) error
behavior. As such, it could be misleading if security analysts
only use singly manifested error behavior to infer the bug’s
possible exploitability.

In order to address this problem, one instinctive reaction is
to take as input a kernel bug report, analyze the root cause
of that kernel bug, and infer all possible consequences that
the root cause of the bug could potentially bring about (e.g.,
out-of-bound memory violation, null pointer dereference, and
memory leak, etc.). However, root cause diagnosis is typically
considered a time-consuming and labor-intensive task. As a
result, we argue that a more realistic strategy for tackling
this problem is to expose many possible post-triggered error
behaviors of a given kernel bug without performing root cause
analysis. Then, from the error behaviors unveiled, security
analysts could better infer its possible exploitability in a more
accurate fashion.

To realize the idea above, we can borrow the concept
of kernel fuzzing. However, existing kernel fuzzing methods
are mainly designed to maximize the code coverage (e.g.,
Syzkaller [4], KAFL [5] and Trinity [6], etc.). Using them in
our task inevitably suffers from inefficiency and ineffective-
ness issues, it is simply because code-coverage-driven kernel
fuzzing is not customized nor optimized for finding various
paths or contexts relevant to the same buggy code fragment. To
this end, we propose a customized kernel fuzzing mechanism
that concentrates its fuzzing energy on the buggy code areas
and, meanwhile, diversifies the kernel execution paths and
contexts towards the target buggy code fragment.

Technically speaking, our proposed kernel fuzzing mech-
anism could be viewed as a directed fuzzing approach. It
first takes one kernel bug report as input and extracts the
kernel structures/objects relevant to the reported kernel error.
Then, the fuzzing method performs fuzzing testing and utilizes
the hits to the identified kernel structures/objects as feedback



to the fuzzer. Since the identified kernel structures/objects
are essential to the success in triggering the reported bug,
using them to guide fuzzing could narrow the scope of the
kernel fuzzer, making the fuzzer focus mostly on the paths
and contexts pertaining to the reported bug. In this work, we
implement this approach as a kernel-object-driven fuzzing tool
and name it after GREBE, standing for “fuzzinG foR multiplE
Behavior Exploration”.

Using our tool to explore error behaviors for 60 kernel bug
reports, we show that GREBE could demonstrate more than
2 different error behaviors on average for each given bug
report. For many kernel bugs in our experiment (26 out of
60), we also observe that their newly identified error behaviors
usually demonstrate a higher exploitation potential than those
listed in the original bug report. More surprisingly, through the
paths and contexts that we newly identified, we also discover
6 kernel bugs with seemly unexploitable memory corruption
ability (e.g. GPF, kernel warning, etc.) could be turned into
ones with powerful memory corruption ability that can be
utilized to perform an arbitrary execution. All these bugs have
not demonstrated any exploitability before. We report this
finding to some kernel vendors – that have not yet applied
the ready-to-use patches in their products – resulting in their
immediate patch adoption.

To the best of our knowledge, this is the first work that
exposes a bug’s multiple error behaviors for exploitability
exploration. The exhibition of multiple error behaviors could
potentially expedite the remedy and elimination of highly ex-
ploitable bugs from the kernel. Besides, it could also augment
security analysts to turn an unexploitable primitive into an
exploitable one. Last but not least, demonstrating a bug with
multiple error behaviors could also potentially benefit the bug’s
root cause diagnosis [7].

In summary, this paper makes the following contributions.
• We design a new technical approach that utilizes carefully

selected kernel objects to guide kernel fuzzing and thus
explores a bug’s multiple error behaviors.

• Following our design, we extend Syzkaller, implement
GREBE, and demonstrate its utility in finding multiple error
behaviors for 60 distinct real-world Linux kernel bugs.

• We show that given a kernel bug demonstrating only a low
possibility to exploit, our proposed method could find its
other error behaviors indicating much stronger exploitability.

II. MOTIVATING EXAMPLE

A reported kernel error implies the potential exploitability
of the corresponding bug. As we mentioned above, the mani-
fested error depends upon how the bug is triggered. As such,
using a single bug report (exhibiting one error behavior) could
possibly bring about the underestimation of that bug’s potential
exploitability. In Listing 1, we show a concrete example to
illustrate this issue.

As is depicted in the list, the function tun_attach is respon-
sible for configuring the network interface. Its argument tun

↪→ refers to a global variable shared by all the tun files in
the opened state. As is shown in line 3, if IFF_NAPI is set

1 static void tun_attach(struct tun_struct *tun, ...)
2 {
3 if (tun->flags & IFF_NAPI) {
4 // initialize a timer
5 hrtimer_init(&napi->timer, CLOCK_MONOTONIC,
6 HRTIMER_MODE_REL_PINNED);
7 // link current napi to the device’s napi list
8 list_add(&napi->dev_list, &dev->napi_list);
9 }
10 }
11
12 static void tun_detach(struct tun_file *tfile, ...)
13 {
14 struct tun_struct *tun = rtnl_dereference(tfile->tun);
15 if (tun->flags & IFF_NAPI) {
16 // GPF happens if timer is uninitialized
17 hrtimer_cancel(&tfile->napi->timer);
18 // remove the current napi from the list
19 netif_napi_del(&tfile->napi);
20 }
21 destroy(tfile); // free napi
22 }
23
24 void free_netdev(struct net_device *dev) {
25 list_for_each_entry_safe(p, n,
26 &dev->napi_list, dev_list)
27 netif_napi_del(p); // use-after-free
28 }

Listing 1: The code snippet of the Linux kernel with a
bug. When triggered with different system call sequences and
arguments, the bug demonstrates two different error behaviors
– a general protection fault error and a use-after-free error.

in tun->flags, the kernel will initialize a timer and link the
corresponding napi to the list of the network device napi_list

↪→ . In line 12, another function tun_detach is responsible for
cleaning up the data enclosed in tun_file as well as closing
the file. If IFF_NAPI is set, the kernel will cancel the timer and
remove the napi from napi_list of the device. In line 24, the
function free_netdev will go through the napi_list to delete
napi in the list.

The kernel bug results from the potential inconsistent state
of the flag tun->flags in tun_attach and tun_detach. Take for
example the kernel bug report [8] generated by Syzkaller. The
PoC program attached to the report shows that a system call
invokes tun_attach with IFF_NAPI unset. In this way, the kernel
neither initializes the timer nor adds the corresponding napi to
the list. Following this setup, the PoC program further invokes
the system call ioctl to set IFF_NAPI in tun->flags before
calling to tun_detach, which causes inconsistent flags between
tun_attach and tun_detach. Then, in line 17, the kernel attempts
to stop the timer, which dereferences a pointer enclosed in the
timer object in tun_detach. However, as is mentioned above,
the timer is not initialized in tun_attach, which results in a
general protection fault. The general protection fault implies
accessing storage that is not designated for use. Therefore,
based on this single observation, many security analysts may
infer the bug is probably unexploitable.

However, after closely looking at this bug, we realize that,
by varying the PoC program and thus modifying the way to
assign inconsistent value for the shared variable, we can have
the kernel demonstrate a use-after-free error. To be specific, we
can set tun->flags with IFF_NAPI before invoking the function
tun_attach. In this way, after tun_attach is called, it could



add the corresponding tun_file to the device list napi_list

↪→ . Following this setup, we can further invoke ioctl to clear
tun_flags and then call tun_detach. As is shown in Listing 1,
the function tun_detach does not remove the corresponding
napi from the list in line 18 ∼ 19, but frees it in line
21. Therefore, when traversing the device list, the KASAN-
instrumented kernel will throw the use-after-free error. In
comparison with the error shown in the report [8], instead
of accessing an invalid kernel memory address that generates
a general protection fault, this non-permitted access ties to
a valid kernel memory address and eventually corrupts the
kernel memory. Therefore, based on this use-after-free error,
many analysts may consider the bug is probably exploitable.

III. DESIGN RATIONALE & OVERVIEW

Given a kernel bug report demonstrating one particular
error behavior, one instinctive reaction for exploring its other
possible error behaviors is to utilize the concept of directed
fuzzing, which explores paths to a program site of our interest.
We can expect that, through some of the newly identified
routes to the buggy code fragment, one could trigger the bug
specified in the report again and observe new error behaviors.
However, this approach is not likely to be effective.

First, to use directed fuzzing to expose multiple error
behaviors, we need to identify the buggy code fragment (i.e.,
the root cause of the error), treat it as the point of interest,
and feed it to the directed fuzzer. However, it is challenging
to pinpoint the root cause of the kernel bug correctly and
automatically. Incorrectly deeming a non-root-cause site as the
site of the fuzzer’s interest could even fail the fuzzer to trigger
the bug, let alone finding multiple error behaviors of the bug.

Second, even if we can point out the root cause of the
kernel bug and have a directed fuzzer repeatedly reaches out
to the buggy code, it does not mean the kernel could manifest
multiple error behaviors. In addition to following different
paths to the buggy code, the exhibition of error behaviors also
relies upon the context after the bug triggering. For example,
in addition to following a specific path to the buggy code
snippet, we also need a separate kernel thread to vary a global
variable, diversifying the contexts needed for triggering the
bug and demonstrating different errors. By design, directed
fuzzing cannot vary the context after reaching out to the target
code of its interest.

In response to the limitation of directed fuzzing, existing
kernel fuzzing techniques could handle the aforementioned
two problems in a better fashion. Kernel fuzzers like Syzkaller
do not require the input of the root cause of a given bug.
They simply vary system calls’ sequences and their argu-
ments and thus thoroughly test kernel code through different
paths. Besides, it also introduces new system calls to vary
the execution contexts. These characteristics complement the
shortage of directed fuzzing. Unfortunately, as we will show in
Section VI, this approach confronts extremely low efficiency
and demonstrates poor effectiveness.

The design principle of existing kernel fuzzing techniques is
to maximize the kernel code coverage, which avoids executing

the code paths that have already been explored. However,
to trigger the same bug and explore its other possible error
behaviors, the fuzzer needs to execute the same buggy code
snippets repeatedly and expects the kernel to run into the same
buggy site in a different context. Therefore, as we will show
in Section VI, the code-coverage-based kernel fuzzing method
(like Syzkaller) has only little benefit for identifying multiple
error behaviors of a single kernel bug.

In this work, we address this problem by extending an
existing kernel fuzzing approach with kernel-object guidance.
Based on our observation from many kernel bugs, we discover
the root cause of a kernel bug usually results from two prac-
tices. One is the inappropriate usage of a kernel object, which
further contributes to a kernel error (e.g., the aforementioned
case assigning inconsistent flag value for a kernel object in
tun_struct type). The other is an incorrect value involved in
computation with a kernel object, which is further propagated
to a critical kernel operation, forcing a kernel to demonstrate
an error (e.g., an unsanitized integer used as the offset of a
kernel object, causing an out-of-bounds memory access). As
such, guided by the objects relevant to the error specified in
the bug report, we can have the kernel fuzzer away from those
paths and contexts irrelevant to the bug and thus improve its
efficiency significantly.

To realize the idea mentioned above, we design our techni-
cal approach as a multi-step procedure that combines static
analysis and kernel fuzzing techniques. As is depicted in
Figure 1, we first take as input a kernel bug report, run
the enclosed PoC program, and track down those kernel
structures involved in the kernel errors (e.g., struct tun_file

↪→ in the motivating example 1). The objects in these types
indicate the possible objects under inappropriate usage or
involving computation with an incorrect value. Therefore,
we further examine the kernel source code and identify the
statements that operate the objects in these types. In this
work, we treat these statements as the sites critical to the
success of kernel bug triggering. As a result, we instrument
these statements so that we can collect the feedback of object
coverage when performing kernel fuzzing and then use the
coverage to adjust the corresponding PoC program. In this
work, our kernel fuzzing mechanism takes as input the original
PoC program attached in the bug report. Using a new mutation
and seed generation method, it varies the PoC, improving the
efficiency and effectiveness in a bug’s multiple error behavior
explorations. In the following section, we will discuss these
techniques in detail.

IV. TECHNICAL DETAILS

In this section, we elaborate on the technical details of our
object-driven kernel fuzzing approach. First, we describe how
to analyze a kernel bug report and identify critical structures
(i.e., the structures involved in the corresponding kernel error).
Second, we discuss how to filter out kernel structures to further
improve kernel fuzzing efficiency in error behavior explo-
ration. Finally, we discuss how to use the identified structures
to design our object-driven kernel fuzzing mechanism.
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Fig. 1: The workflow of GREBE. (a) Following a kernel error trace obtained from a crash report, GREBE performs backward
taint analysis and identifies all the kernel objects involved in the crash/panic. (b) Based on the objects’ rareness, GREBE narrows
down the objects critical to the kernel error. (c) Guided by the objects filtered out in the last step, GREBE instruments kernel
and treats the critical objects’ (de)allocation and dereference sites as the anchor sites. (d) GREBE customizes Syzkaller so that
it could leverage the anchor sites’ reachability feedback to select seeds. Besides, GREBE introduces a customized mechanism
to mutate seeds so that GREBE could diversify the ways to trigger the same kernel bug.

1 // in drivers/vhost/vhost.c
2 void vhost_dev_cleanup(struct vhost_dev *dev)
3 {
4 WARN_ON(!list_empty(&dev->work_list));
5 if (dev->worker) {
6 kthread_stop(dev->worker);
7 dev->worker = NULL;
8 dev->kcov_handle = 0;
9 }

10 }
11 // in include/asm-genric/bug.h
12 #define WARN_ON(condition) ({ \
13 int __ret_warn_on = !!(condition); \
14 if (unlikely(__ret_warn_on)) \
15 __WARN(); \
16 unlikely(__ret_warn_on); \
17 })

Listing 2: The code snippet that performs explicit checking.

A. Critical Structure Identification

In this work, we utilize backward taint analysis to identify
essential kernel structures (i.e., those involved in the error
specified in the given bug report). Here, we detail how we
identify the source and the sink and thus perform backward
taint analysis accordingly.

1) Report Analysis & Taint Source Identification: The
Linux kernel has a variety of debugging features implemented
in different ways (e.g., BUG, WARN, and KASAN). However, most
of them follow the same pattern. That is enforcing checks dur-
ing the kernel execution and examining whether pre-defined
conditions are satisfied. If the conditions do not hold, then the
kernel runs into an error state and logs critical information
for debugging purposes. Following the critical information
logging, the kernel may take further action to panic itself or
kill the current process.

Take, for example, the case shown in Listing 2. The
function vhost_dev_cleanup() cleans the worker attached to the
vhost_dev device. In line 4, the kernel examines the work_list

↪→ . If the WARN_ON macro deems the list is empty, the kernel
continues its execution at line 5, which performs the cleanup
task. Otherwise, the kernel will execute the code in WARN_ON

macro and log the error. In this example, the error is reported
if and only if the pre-defined condition “!list_empty(&dev->
↪→ work_list)” is true at runtime. Therefore, the variable dev->

↪→ work_list in the condition indicates a cause of the bug and

label1:

…

tmp = icmp (conv, 0)

….

label2:

…

label3:

…

define bug(…)

…

1 // comparison

2 tmp = icmp (conv, 0)

3 // conditional jump

4 br (tmp, label1, label2)

5

6 label1:

7 call @printk(...) // log

8

9 label2:

10 br (label3) // direct jump

11

12 label3:

13 call @bug(...) // call

14

15 define bug(..)

16 call @printk(...) // log

Fig. 2: An illustrating example and its dominator tree, which
demonstrate two different methods of logging kernel errors.
The line 7 is a logging statement responsible for kernel error
recording. The line 15 is the wrapper of the logging statement
at line 16. The variable conv in line 1 is the taint source that
our proposed approach identifies. Note that for simplicity we
place the two error logging functions at two different branches
sharing the same conditional jump block. In the real world,
the error logging cannot occur in this way.

should become the starting point of our analysis (i.e., the taint
source of our backward analysis). In this example, the kernel
developers explicitly formulate the pre-defined condition as an
expression and pass it to the macro WARN_ON for error handling.
However, for some other debugging features, the checking
is instrumented by a compiler or completed by hardware
instead of a piece of source code written by kernel developers.
For these features, the condition is implicitly formulated and
cannot be identified from the kernel source code. In the
following, we describe how we deal with various debugging
features and their error logging mechanisms and thus identify
the taint source.
Explicit Checking. Similar to the aforementioned example,
the kernel developers explicitly formulate the checking as an
expression and pass it to the standard debugging features such



1 // source code
2 walk->offset = sg->offset;
3
4 // pseudo binary code after instrumentation
5 kasan_check_read(&sg->offset, sizeof(var));
6 tmp = LOAD(&sg->offset, sizeof(var)); // first access
7 kasan_check_write(&walk->offset, sizeof(var));
8 STORE(tmp, &walk->offset); // second access

Listing 3: The code snippet that performs implicit checking.

as WARN_ON and BUG_ON. Inside these macros, it is a patterned
code block that includes a condition statement and a logging
statement that will be executed if the condition is satisfied.
Apart from this standardized way to log kernel errors, the
developers can also build their own macro that wraps a logging
statement in a helper function (e.g., the code in the line 15 &
16 shown in Figure 2).

To identify the condition that triggers the execution of
the logging statement and thus pinpoint the taint source,
we first trace back along the dominator tree until we find
a dominator basic block, the last statement of which is a
conditional jump (e.g., given the wrapped logging statement in
line 16 in Figure 2, the line 4 is the statement linking to the
dominator basic block). Second, we treat the corresponding
comparison as the condition that triggers the execution of the
error logging (e.g., the line 2 in Figure 2). Finally, we extract
the corresponding variable in the condition as our taint source
(e.g., conv in Figure 2).
Implicit Checking. Implicit checking refers to the situation
where the checking is not part of the kernel source code but
instrumented by a compiler or completed by hardware. For
implicit checking done by compiler instrumentation, Kernel
Address Sanitizer (KASAN) is such an example in which
KASAN-enabled compiler instruments every memory access
so that the kernel could examine whether the access to a
memory address is legal. KASAN relies on shadow memory
to record the memory status. If the instrumented kernel, for
example, touches a freed memory region, it will generate a
bug report indicating the instruction that triggers a use-after-
free error. Regarding the implicit checking done by interrupts
(e.g., general protection fault detected by MMU), the interrupt
handling routine is responsible for logging the corresponding
instruction.

From bug reports generated by these debugging mecha-
nisms, we can easily identify the instruction that performs
the invalid memory access. With this information in hand, our
next step is to identify the variable associated with that invalid
memory access. However, the binary instruction enclosed in
the report contains no type information. To deal with this
problem, from the debugging information, we map binary
instructions with their corresponding statements in the source
code. Suppose the mapped source code is a simple statement
with only one load or store. In that case, we directly conclude
that this statement is the one causing the illegal memory access
and treat the operand variable as a taint source. However,
if the identified instruction links to a compound statement
involving multiple memory loads and stores (e.g., walk->offset

↪→ = sg->offset depicted in Listing 3), we perform further
analysis. To be specific, we first examine the bug report and
pinpoint the specific instruction that captures the kernel error.
Then, we treat the memory access associated with the error-
catching instruction as our taint source. To illustrate this, we
again take, for example, the case shown in Listing 3. The
bug report indicates the error is captured by the statement
kasan_check_read(&sg->offset, sizeof(var)) which associates
with sg->offset. We deem sg->offset in line 2 as the taint
source.

2) Taint Propagation & Sink Identification: Recall that
backward taint analysis aims to find critical structures, i.e.,
those structures involved in the error specified in the given
bug report. To do it, we again extract the call trace from the
bug report. Based on the trace, we then construct its control
flow graph and propagate the taint source backward on the
graph.

Along with the backward propagation, we use the following
strategy to perform variable tainting. If the tainted variable is
a field of a nested structure or a union variable, we further
taint its parent structure variable and treat the parent structure
as a critical structure. The reason is that the nested structure or
the union variable is part of the parent structure variable in the
memory. If a field of the nested structure or the union variable
carries an invalid value, it likely results from inappropriate use
of its parent structure variable.

When backward taint propagation encounters a loop, we
also propagate the taint to the loop counter if the taint source
was updated inside the loop. An example of this practice is
some of the out-of-bound access errors in which the loop
counter is corrupted, unexpectedly enlarged, and eventually
used as an offset to reach out to an invalid memory region.
By extending the taint to the loop variable, we can include the
corrupted variable, which could further help us identify other
structure variables relevant to the corruption.

In this work, we terminate our backward taint process until
one of the following conditions holds. First, we terminate
our taint analysis if the backward propagation reaches out to
the definition of a tainted variable. Second, we terminate our
taint propagation if it reaches out to a system call’s entry, an
interrupt handler, or the entry of the function that starts the
scheduler of work queue. It is simply because they indicate the
sites where the kernel debugging features start to trace kernel
execution for later stage debugging. It should be noted that,
while performing backward taint propagation, we also extend
propagation to the aliases of the tainted variable. In this work,
we treat structural types of all the taint variables as the critical
structure candidates for our kernel fuzzing guidance.

B. Kernel Structure Ranking

By analyzing a kernel bug report and performing the back-
ward taint analysis above, we can identify all the kernel struc-
tures pertaining to the error in the report. However, as we will
discuss below, using the structures identified to guide kernel
fuzzing and explore the bug’s other error behaviors, we could
still confront low efficiency and even poor effectiveness. As a



1 // definition of struct sk_buff
2 struct sk_buff {
3 union {
4 struct rb_node rbnode;
5 };
6 ...
7 struct skb_ext *extensions;
8 };

Listing 4: The code snippet indicating structure definition.

result, before applying these structures and their corresponding
objects to guide our kernel fuzzing, we need to further narrow
down the kernel structures for kernel fuzzing guidance.
Kernel structure selection. To maintain the code quality, the
Linux kernel developers employ plenty of design patterns [9].
These patterns provide a suggested practice and framework
to manage data in a commonly recognized fashion. Take
the double-linked list as an example. The struct list_head

↪→ structure can be embedded anywhere in a data structure,
and the list_head from many instances of that structure can be
linked together. As a result, the kernel objects can be managed
by standard interfaces, such as container_of which gets access
to the parent for a given child structure, and list_add/del

which performs list operations. The struct list_head is used
pervasively in the entire kernel codebase. If including such
popular structures and the corresponding objects for kernel
fuzzing guidance, the kernel fuzzer would inevitably explore
a large code space, driving the fuzzer away from its attention
to the buggy code attributing to the kernel error specified in
the report. Therefore, to preserve the kernel fuzzer’s efficiency
in exploring a bug’s multiple behaviors, we need to exclude
these structures from our kernel fuzzing guidance.

In addition to the structures mentioned above, Linux kernel
developers also implement many other structures pertaining
to abstract interfaces. These interfaces are coupled with im-
plementation layers in support of a large number of devices
and features. For example, the kernel creates a struct socket

↪→ for all networking services requested from userspace no
matter what protocol is specified. Such structures are also
popular, appearing in many kernel code sites across various
kernel modules. As a result, similar to struct list_head, they
should also be eliminated from the later-stage kernel fuzzing.

The structures mentioned above are just examples of popular
structures. To pinpoint and exclude them for multiple error
behavior exploration, we design a systematic approach to
ranking the kernel structures based on their popularity. At
a high level, this method constructs a graph describing the
reference relationship between kernel structures. Each node in
the graph represents a kernel structure, and the directed edges
between nodes indicate the reference relationships. On the
graph, we apply PageRank [10] which assigns each structure
a weight. In this work, we deem the structure with a higher
weight a more popular structure than others and exclude
them while performing kernel fuzzing for other error behavior
exploration.
Structure graph construction. To construct the structure
graph mentioned above, we first analyze all the structures
defined in the kernel source code. Given one structure, we

1 static inline void *__skb_push(struct sk_buff *skb, ...)
2 {
3 return skb->data;
4 }
5
6 int ip6_fraglist_init(...)
7 {
8 struct frag_hdr *fh;
9 // type casting from void* to struct frag_hdr*
10 fh = __skb_push(skb, sizeof(struct frag_hdr));
11 }

Listing 5: The code snippet indicating type casting.

go through all its field members. If the field is a pointer to
another structure, we link the given structure to the referenced
structure. Suppose the field is a nested structure or union, in
that case, we expand them repeatedly until we identify a self-
referenced structure, or there is no more nested structure/union
in the definition. We link the given structure directly to the
structure in the last layer of expansion, ignoring the union in
the middle to shrink graph size. For example, in Listing 4,
extensions is a pointer referencing struct skb_ext. We link
struct sk_buff to struct skb_ext in our graph. However, it
should be noted that struct rb_node is a self-referenced struc-
ture in an anonymous union. Following the method above,
we skip the anonymous union and link only struct sk_buff

directly to struct rb_node without further expansion.
In addition to analyzing the structure definition in kernel

source code, we also construct the structure graph with the
consideration of type casting. Since the kernel supports poly-
morphism that uses a single interface to describe different
devices and features, one abstract data type can be cast to
a more concrete type. Take the function ip6_fraglist_init

↪→ in Listing 5 as an example. In this function, skb->data

is cast from void* to struct frag_hdr* which is further used
in the IPV6 networking stack. The void* is an abstract data
type, whereas the destination structural type struct frag_hdr

↪→ * is more concretized. As such, we add one more edge
to our structure graph, which links struct skb_buff to struct

↪→ frag_hdr.
Intuition suggests that the structures with more references

are more popular ones. They are more likely to be abstract data
types. Besides, the structures referenced by popular structures
can also be popular because they can also be used in many
program sites in the kernel. For these structures, they are too
prevalent to improve our kernel fuzzer’s efficiency in better
exploring the error behavior of a kernel bug. To identify these
kernel structures, we utilize the PageRank algorithm on the
graph to rank their popularity. In this work, we use only those
kernel structures and objects with lower ranks to guide our
fuzzing process. In Section V, we discuss how we choose
the page-rank score threshold to distinguish popular structures
from less popular ones.
Technical discussion. While the elimination of popular kernel
structures narrows the focus of our kernel fuzzer, intuition
suggests that it could also potentially restrict our kernel fuzzer
from exploring other error behaviors for a given kernel bug.
On the one hand, if the removed popular structures are the root



cause of the kernel bug, our fuzzer may no longer reach out to
them and thus miss the opportunity to trigger the bug of our
interest. On the other hand, if most of the kernel bugs’ root
causes are popular structures, our proposed technique might
have only limited utility in helping a bug find its multiple error
behaviors.

In this work, we argue the concerns above are not likely to
be raised in the real world. First, based on our observation
of hundreds of real-world kernel bugs, the root causes of
most kernel bugs tie to less popular structures. As such, the
removal of popular structures does not negatively influence
the fuzzer in triggering the bug of our interest. Second, even
if the eliminated popular structures are related to the root cause
of our interest’s kernel bug, having the fuzzer focused on
those less popular structures can still allow us to reach out
to some objects in the popular structural types. The reason is
that less popular structures are usually composed of popular
ones (e.g., the rare structure struct napi_struct contains the
popular structure struct hrtimer in Listing 1). Paying attention
to those less popular structures still provides opportunities
to touch popular structures through fewer instances of these
structures. In Section VI, we show several cases in which the
corresponding bugs’ root causes are relevant to those removed
popular kernel structures. We demonstrate that our fuzzing
approach can still trigger our interest’s bugs and explore their
other error behaviors even for those cases.

C. Object-driven Kernel Fuzzing

With the critical structures identified, we now discuss how
we utilize these structures to facilitate kernel fuzzing and thus
explore multiple error behaviors for a single kernel bug.
Instrumentation. Conventional kernel fuzzing methods in-
strument tracing functions to keep track of basic blocks that
have been executed. In this work, our fuzzing mechanism
preserves this instrumentation ability and, further, introduces
one additional instrumentation component. Our instrumenta-
tion component is designed as a compiler plugin. The plugin
examines each statement in basic blocks and identifies those
basic blocks that take the responsibility of the allocation, de-
allocation, and the usage of critical objects (i.e., the objects
in the type of critical structures). More specifically, the in-
strumentation component introduces a new tracing function
that replaces the most significant 16 bits of the recorded
basic block address with a magic number to differentiate these
basic blocks from others. With this instrumentation along with
the inherited one, by observing the most significant 16 bits
of addresses in the code coverage feedback, we can easily
pinpoint which basic block pertaining to the critical objects is
under the operation of the corresponding fuzzing program.
Seed selection. With the instrumentation’s facilitation above,
when running a fuzzing program, we can easily determine
whether it reaches out to a critical object. Once we identify
a new critical object coverage, we can add the corresponding
fuzzing program into the corpus of our seed fuzzing programs.
In this work, we include the mutated seed program or the
newly generated seed program into the seed corpus only if

1 r0 = openat(...,
2 ’/dev/dsp1\x00’);
3 ioctl(r0, ...);
4 write(r0, ...);
5 read(r0, ...);

(a) 7022420

1 // initial PoC: max = -1
2 bpf$MAP_CREATE(...,
3 @max=0xffffffffffffffff);
4 // exit triggers GFP
5 exit(0);

(b) 692a8c2

TABLE I: The example code snippets extracted from the PoC
programs in two different kernel bug reports – 7022420 [11]
and 692a8c2 [12].

one of the following two conditions holds. First, the program
reaches out to an unseen basic block involving critical object
operations. Second, at least one system call in the program
covers more code, and the same system call has demonstrated
critical object operation in previous fuzzing. It should be
noted that we include the second condition because this allows
kernel fuzzing to accumulate kernel states and thus increase
the possibility for future mutations to reach out to unseen basic
blocks involving critical objects.
Seed generation & mutation. In this work, we initialize
the seed corpus with the PoC program enclosed in the bug
report under our examination. Every time, when generating
a new seed fuzzing program, we assemble the new fuzzing
program by using only the system calls that have already
been included in the seed corpus. It should be noted that this
is very different from the seed fuzzing program generation
method used in the state-of-the-art fuzzing technique (e.g.,
Syzkaller), which generates a seed fuzzing program by not
only adopting the system calls enclosed in the corpus but
also bringing in the new system calls. The reason behind our
design change is that exploring multiple error behaviors of
a kernel bug requires triggering a critical object accessing
under different contexts or through different execution paths.
Randomly introducing new system calls into the new seed
fuzzing program could enlarge the code coverage that the
fuzzing program can explore. However, it inevitably detours
the fuzzing program away from the critical objects.

Intuition suggests that using the aforementioned seed gen-
eration approach alone is not likely to explore a sufficient
number of contexts and paths pertaining to the critical objects.
As such, we further introduce the mutation mechanism used
in the existing kernel fuzzing technique (i.e., Syzkaller). This
mutation mechanism introduces into the seed fuzzing program
new system calls that are relevant to the system calls already
enclosed in the seed corpus. In this way, we expect the
fuzzing program could still stick with the critical object and,
at the same time, diversify the execution contexts or the paths
towards the object.
Mutation optimization. When performing the mutation for a
fuzzing program, the mutation mechanism of Syzkaller utilizes
pre-defined templates to guide the synthesis of new fuzzing
programs. A template specifies the dependency between sys-
tem calls and the argument format of corresponding system
calls. For example, Syzkaller’s template specifies that the
system call read requires a resource (i.e., a file descriptor)



as one of its arguments, and the syscall openat, as well
as the system call socket, will generate the corresponding
resource. Under the guidance of this template, Syzkaller could
perform mutation against a fuzzing program by appending
the system call read or the system call socket to the system
call openat. The mutation under template guidance ensures the
seed program is legitimate and thus avoids the kernel’s early
rejection against the fuzzing program.

As is mentioned above, our mutation mechanism borrows
the method used in Syzkaller. As we will show in Section VI,
while this approach is useful in avoiding generating invalid
kernel fuzzing programs, it is still inefficient and sometimes
ineffective in guiding our kernel fuzzer to expose multiple
behaviors for a single kernel bug. As we elaborate below, the
reasons behind this are two folds.

First, while performing a fuzzing program mutation, the
Syzkaller attempts to introduce various system calls rele-
vant to the seed program and randomly manipulate system
calls’ arguments. However, we note that both the resource
and arguments that system calls operate are necessary for
successfully triggering a target kernel bug. Mutation without
the consideration of these two factors would inevitably incur
low effectiveness in exploring multiple error behaviors.

Take the case depicted in Table Ia as the first example.
The table shows a code snippet indicating a PoC program
that triggers a kernel bug [11]. Taking this PoC as a seed
program and performing mutation, Syzkaller inserts the system
call socket which is irrelevant to the bug. This change would
inevitably involve the resource that cannot lead to the bug’s
triggering and guide the fuzzer to enter a large code space.

Take the case shown in Table Ib as the second example.
Similar to the example above, the table shows part of a PoC
program triggering a different kernel bug [12]. In the mutation
stage, Syzkaller varies the variable @max=0xffffffffffffffff

because the template indicates that the legit value range for
this variable is [INT_MIN, INT_MAX]. However, for this specific
kernel bug, which triggers an integer overflow in the kernel,
the condition of triggering this bug is @max=-1 or in other words
@max=0xffffffffffffffff. As a result, this argument’s random
mutation is futile, significantly influencing the triggering of
the bug in different contexts.

To resolve the problems above, we improve our fuzzing
approach by optimizing its mutation mechanism. More specif-
ically, we group the system call specification templates based
on the resource type the corresponding system calls reply
upon (e.g., categorizing system calls pertaining to the network
socket and device file separately). Within each group, we
then divide the enclosed system calls into two subgroups.
One is responsible for resource creation, and the other is for
their usage. With this grouping result, when mutating a seed
program, our fuzzing component either replaces system calls
with the ones in the same group or inserts system calls that
associate with the resource shown in the seed program. We
will release our results at [13].

In addition to grouping templates based on resource, our
mutation mechanism also preserves the values for the argu-

ments seen in the original PoC program if the types of these
arguments do not fall into the following four categories –
constant, pointer referencing a memory region, checksum, and
resource (e.g., a file descriptor for an opened file or an estab-
lished socket). For arguments in constant, they usually indicate
the protocol under fuzzing testing (e.g., AF_INET and AF_INET6

↪→ in the system call socket() indicating the establishment
of the IPv4 and IPv6 socket, respectively). In the fuzzing
test, we need to alter these arguments to switch protocols and
thus vary the contexts under which the bug could be triggered
again with different error behaviors. For arguments in pointer
types and belonging to resources, when the kernel fuzzing
changes the context or path toward the buggy kernel code, the
original PoC program’s addresses could be illegal. Retaining
these addresses could incur early termination of the fuzzing
program. Regarding the checksum, if the calculation source’s
value varies in the mutation process, the checksum should
be updated accordingly. Preserving the same checksum value
could also result in the fuzzing program’s early termination at
the data validation phase.

V. IMPLEMENTATION

Based on LLVM infrastructure and the kernel fuzzing tool
Syzkaller, we implement our idea as a tool and name it
after GREBE. Below, we describe some critical details of
our implementation. The source code of GREBE is available
at [13].
Critical structure identification. The input of our tool is
LLVM IR and a single bug report. In our implementation, we
employ the approach in previous works [14], [15] to generate
the bitcode files. Briefly, we patch the LLVM compiler to
dump bitcodes before invoking any compiler optimization
passes. In this way, we can prevent compiler optimization from
influencing the accuracy of our analysis. Recall that we extract
the call trace from the bug report. The call trace indicates the
functions that have been called but not yet returned when the
kernel is experiencing errors. In this extracted call trace, the
function that has been called last could be the one instrumented
by the compiler. It does not indicate the buggy function
contributing to the error. As such, we neglect these functions
in the call trace and start our analysis from the statement that
activates the debugging feature.

When using the backward taint analysis to identify criti-
cal structures, GREBE uses three instructions to extract the
structures’ type information. The first instruction is BitCast

↪→ in which the types before and after casting are specified.
GREBE records the types extracted from this instruction as
critical structures. The second instruction is Getelementor that
contains a pointer referencing a kernel object and the object’s
corresponding type information. Through the analysis of this
instruction, we can quickly obtain critical structures. The third
instruction is CallInst. We infer the type information from the
callee’s prototype and record the structural type as critical
structures. As is mentioned earlier, we treat system calls’
entries, interrupt handlers, and workqueue processings as our



taint sink. In our work, we manually annotate all these sinks
based on their naming patterns.
Critical structure ranking. As is described in Section IV-B,
when constructing the structure graph for critical structure
ranking, we consider typecasting. In our implementation, if
the cast variable is the return value of a callee function,
we investigate the callee from the return statement and then
associate the destination type with the structure field. Again
take the case shown in Listing 5 as an example. The cast
variable skb->data is the return value of the callee function
__skb_push. By analyzing the callee function, we associate
struct frag_hdr with struct sk_buff.

Recall that we also rank structures based on their page-rank
scores and then use a page-rank score threshold to filter out
those popular ones. In this work, we choose this threshold
by using a standard univariate outlier detection method [16].
This approach computes the mean and standard deviation of
the page rank scores and then calculates the Z-score for each
structure further. Following the outlier detection method, we
use 3.5 more standard deviations as the threshold. Since most
kernel structures are less popular, having a significantly low
z-score, this threshold could well distinguish popular kernel
structures from the others.
Kernel fuzzing. As is described in Section IV-C, we in-
strument the kernel to collect the usage of critical objects
at runtime. Since the support of Clang has been introduced
recently, which may not support all versions of the Linux
kernel, we perform instrumentation by using a GCC plugin
instead of a Clang pass. While performing a fuzzing program
mutation, we follow the design of MoonShine-enhanced [17]
Syzkaller, randomly mutating 33% system calls and replacing
them with others we have manually grouped.

When implementing the optimization mechanism that reuses
the arguments from the original PoC, for each system call in
the PoC program, we first find its specification in Syzkaller
and analyze the definition of its structural arguments (i.e.,
StructType and UnionType). Then, we recursively examine the
structural arguments until no more new definitions can be
found. Inside each structural definition, we ignore ConstType

↪→ , VmaType, ResourceType, and CsumType because they represent
constant, pointer, resource description, and checksum respec-
tively. As we discussed in Section IV-C, they are not likely to
help explore new paths to the buggy code.

VI. EVALUATION

In this section, we first quantify GREBE’s effectiveness and
efficiency and compare it with a code-coverage-based fuzzing
method. Then, we demonstrate and discuss how well GREBE
could unveil exploitation potential for real-world Linux kernel
bugs.

A. Experiment Setup & Design

Syzbot is a bug reporting platform that well archives the
kernel bugs identified by Syzkaller. To evaluate our tool –
GREBE, we select kernel bugs and their reports from the

platform as our test cases. While selecting these bugs, we
follow two different strategies.

Our first strategy is a purely random selection process that
follows two criteria. First, the bug report has to attach a PoC
program so that we can reproduce the error specified in the
report. Second, the reported kernel error cannot associate with
Kernel Memory Sanitizer (KMSAN) because KMSAN is still
under development and has not yet been merged into the Linux
kernel mainline. By following these two criteria, we construct
a test corpus containing 50 Linux kernel bugs.

Our second bug selection strategy is a process dedicated to
different kernel versions. To be specific, we select bugs from 5
different Linux kernel versions (5.6 5.10)1. From each kernel
version, we choose two recently-reported reproducible kernel
bugs as our test cases. In this way, we construct another test
corpus with 10 Linux kernel bugs. Combining with the kernel
bugs in the first corpus, we obtain a dataset with 60 unique
kernel bugs. To the best of our knowledge, our dataset is the
largest used in the exploitability research.

For each bug in our dataset, we built the corresponding
kernel in four QEMU virtual machines (VMs) by following the
description of their bug reports. For the first two VMs, we ran
our tool – GREBE and Syzkaller. For the remaining two VMs,
we ran GREBE without enabling its mutation optimization
and Syzkaller with our mutation optimization (i.e., Syzkaller’s
variant). With this setup, we can evaluate GREBE’s effective-
ness and efficiency in different settings. Besides, we can com-
pare it with the code-coverage-based kernel fuzzing method
and its variant (i.e., Syzkaller with our mutation optimization).
It should be noted that we use Syzkaller as our baseline
approach for evaluation because it is one of open-sourced,
code-coverage-based kernel fuzzing tools but mostly because it
can test nearly all kinds of kernel components2. It should also
be noted that we extend Syzkaller with our proposed mutation
optimization for the following reason. GREBE is an extension
of Syzkaller. It combines both the object-driven component
and mutation optimization. With our mutation optimization
integrated into Syzkaller alone, we could examine whether
mutation optimization could become a sole driving force to
enable multiple error behavior exploration.

Given a kernel bug of our selection, its report, and a kernel
fuzzing tool under our evaluation, we include the PoC program
enclosed in the report into the initial seed set and deploy our
VMs on bare-metal AWS servers. Each of the servers has two-
socket Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz
(48 cores in total) and 192 GB RAM, running Ubuntu 18.04
LTS. For each VM, we configured it with two virtual CPU
cores and 2GB RAM. While performing kernel fuzzing, we set
each of the fuzzers to run for 7 days. To utilize the computation

1At the time of our experiment, 5.10 is the latest long-term support Linux
kernel version.

2The State-of-the-art kernel fuzzing tools – HFL [18], SemFuzz [19] have
not yet been publicly released. DIFUZE [20], KRACE [21], and Razzer [22]
etc. are designed for fuzzing specific bug types or kernel modules. Previous
research [18] shows Syzkaller has better performance than KAFL [5] and
Trinity [6] in terms of code coverage. Therefore, we choose MoonShine-
enhanced Syzkaller as our baseline.



resource of the AWS server efficiently, we assign only 30 VMs
for each server. In total, it takes us two months to gather the
experiment results shown in this paper.

After 7 days of fuzz testing against various versions of
the Linux kernels by using four different fuzzers, we formed
a 6-member team under the guidance of an IRB approval
(STUDY00008566). Among the 6 members, 2 are experienced
security analysts regularly developing kernel exploits in the se-
curity industry. The other 4 members are academic researchers
actively contributing to the Linux community and frequently
invited to give talks at the Linux Security Submit or other
Linux-related conferences. In our evaluation, we asked this
professional team to collect the fuzzing results (i.e., reports)
from all VMs, group the reports based on their title uniqueness,
and eventually preserve only the kernel reports truly tied to
the 60 bugs of our selection. Note that a kernel fuzzer might
trigger other kernel bugs and thus demonstrate errors. Since
there have not yet been highly accurate crash triaging tools, the
professional team inspects each of the kernel errors manually
and preserves only the errors associated with our selected
bugs. The procedure of manually triaging the kernel errors
is described in Appendix B.

In addition to the manual effort above, we also asked
our kernel professional team to thoroughly and manually
inspect whether there are any other missing paths or contexts
that could trigger the kernel bugs and thus exhibit different
error behaviors. In this way, we can evaluate GREBE’s false
negatives or, in other words, understand how complete GREBE
could expose a bug’s multiple error behaviors. It should be
noted that the Linux kernel’s codebase is huge and sophisti-
cated. Given a kernel bug, it usually requires extensive manual
efforts and significant expertise, spending hundreds of hours to
perform through manual analysis for exploring all the possible
errors. As a result, we evaluate the false negatives of GREBE
by sampling 30% of the selected kernel bugs (18 out of 60
selected bugs).

B. Experiment Results

Effectiveness. Table II shows the sampled experiment re-
sults3. First, we can observe that our tool – GREBE– could
demonstrate a significant advantage in finding a bug’s multiple
error behaviors. In comparison with Syzkaller and Syzkaller
variant, which discover a total of 9 additional error behaviors
for only 6 and 7 test cases within 7 days, GREBE identifies
132 new error behaviors for 38 out of 60 test cases. These
kernel error behaviors have not been seen in the bug reports
that we gathered from Syzbot. Second, we can observe the
mutation optimization greatly improves GREBE’s utility. In 7
days of our experiment, GREBE without mutation optimization
pinpoints 58 new error behaviors for 27 cases. This result
significantly outperforms that of Syzkaller. However, without
mutation optimization, GREBE experiences more than 50% of
a downgrade in terms of the newly identified error behaviors

3It should be noted that, due to the space limit, we place the complete
experiment results at [26].

(132 vs. 58) and about 30% of decrease in terms of the
cases it could handle (38 vs. 27). Third, we discover that,
while generally performing worse than GREBE, GREBE with-
out enabling mutation optimization sometimes demonstrates
better performance. For the test cases – #8eceaff, #3b7409f,
and #d5222b3, GREBE without mutation optimization tracks
down 4 additional error behaviors. We argue this does not
imply the ineffectiveness of our mutation optimization method.
Our manual inspection indicates the missing error behaviors
primarily result from the nature of these bugs. Even if our
mutation mechanism successfully constructs correct inputs to
trigger the bug, making the bug manifest a different error
behavior also relies upon a specific thread interleaving that
mutation-optimization-disabled solution luckily discovers.
False negatives. As is mentioned above, we also randomly
selected 30% of test cases, performed manual analysis, and
examined how complete GREBE could identify the error
behaviors of a given kernel bug. In our experiment, the test
cases used for our false negative study are listed in Table V in
Appendix. Our manual inspection shows that GREBE misses
one error behavior for the cases #d1baeb1, #85fd017 and #

↪→ 695527b, and two error behaviors for the case #d5222b3. To
understand the reasons behind these missing error behaviors,
we first measure the number of basic blocks between the root
cause of a kernel bug and its error panic site. We hypothesize
that the false negative might relate to the distance between
the root cause and the error site. However, as is shown in
Table V, we did not find clear correlation between the distance
and the effectiveness of GREBE. For more detail about the
measurement and hypothesis validation, readers could refer to
Appendix C.

With the rejected hypothesis in hand, we further took a
look at false-negative cases closely, exploring the conditions
of triggering the missing error behaviors. We found that,
in addition to finding different paths and contexts by using
GREBE, the exhibition of the missing behaviors also requires
the manipulation of thread interleaving. For case like #85fd017

↪→ , the manifestation of error behaviors depends on the layout
of memory. The undiscovered error behavior occurs only if
the memory in the overflowed region is unmapped. We do
not attribute this to the incompetency of GREBE. Rather, we
will leave the manipulation of thread interleaving and memory
layout as part of our future research.
Impact of popular kernel structure removal. Recall that in
Section IV-B, we rank the identified critical structures based
on their popularity and avoid using popular structures to guide
our kernel fuzzing. Intuition suggests this might influence the
effectiveness of our kernel fuzzing on finding a bug’s multiple
error behaviors. However, from the 60 kernel bugs of our
selection, we observe there are only 3 out of 60 test cases
(5%) the root cause of which ties to popular structures (sk_buff
↪→ for #d1baeb1, nlattr for #b36d7e4 and #27ae1ae). Even for
these cases, GREBE still demonstrates its utility in finding
the bugs’ multiple error behaviors. These observations well
align with our aforementioned arguments – ¶ the kernel bug
generally roots in the inappropriate usage of less popular



SYZ ID Critical Structures Identified Initial Error Behavior Discovered New Error Behaviors
Time (in hours)

T1 T2 T3 T4

bdeea91[23]
aead instance, crypto aead, ,

WARNING: refcount bug in crypto mod get
WARNING: refcount bug in crypto destroy tfm 6.69 2.62 0.06 1.25

crypto spawn, pcrypt instance ctx
crypto aead spawn, crypto type KASAN: use-after-free Read in crypto alg extsize - - - 83.69

5d3cce3[8] napi struct, tun file general protection fault in hrtimer active
KASAN: use-after-free Read in free netdev - - 155.76 30.30

KASAN: use-after-free Read in netif napi add - - 77.41 9.08

521a764[24] ax25 address, nr sock WARNING: refcount bug in nr insert socket

KASAN: use-after-free Read in release sock - - 0.03 4.39
KASAN: use-after-free Read in nr release - - - 20.00

KASAN: use-after-free Read in nr insert socket - - - 0.06
KASAN: use-after-free Write in nr insert socket - - - 126.82
KASAN: use-after-free Read in lock sock nested - - - 18.20

229e0b7[25] delayed uprobe general protection fault in delayed uprobe remove

KASAN: use-after-free Read in delayed uprobe remove - - 3.83 6.66
KASAN: use-after-free Read in uprobe mmap - - 12.69 4.10

general protection fault in uprobe mmap - - - 89.49
KASAN: use-after-free Read in update ref ctr - - - 157.46

TABLE II: The performance of Syzkaller, Syzkaller variant, GREBE and GREBE without mutation optimization under some
sampled kernel bugs. The “SYZ ID” column is the case ID. The “Critical Structures Identified” means the structures that are
identified by the static analysis tools then are utilized by GREBE. The “Initial Error Behavior” column indicates the error
behavior manifested in the corresponding bug report. The “Discovered New Error Behaviors” column is the error behaviors
newly discovered. Note that, for each case, we sample only some of its newly identified error behaviors for illustration purposes.
For more complete performance information across all 60 selected kernel bugs, the readers could find at [26]. In the “Time”
column, T1 represents the number of hours Syzkaller took, T2 is for Syzkaller’s variant, T3 is for GREBE without optimization,
and T4 stands for GREBE. The dash “-” means the corresponding error behavior is not discovered by the corresponding tool.

kernel structures, and · focusing on less popular structures
can still allow our fuzzer to reach out to popular structures
because of the strong dependence between them. In Table II,
we list some kernel object types that GREBE uses for fuzzing
guidance. For more complete kernel object types identified for
each kernel bug, readers could find them at [26].
Efficiency. Table II and the table at [26] show the time that
each fuzzer spent on finding a new kernel error behavior.
First, we observe that both Syzkaller and its variant have
comparable efficiency (21546 hours vs 21528 hours). How-
ever, GREBE without mutation optimization spends less time
than Syzkaller on identifying the new error behavior (15011
vs. 21546 hours)4. After applying the mutation optimization,
GREBE further reduces the time spent on new error behavior
identification (5445 vs. 15011 hours). This discovery indicates
mutation optimization alone provides minimum benefits to
the improvement of fuzzing efficiency whereas object-driven
component alone or the combination of both brings significant
improvement in fuzzing efficiency.

Second, we observe that GREBE succeeds in disclosing 79
new error behaviors for 32 test cases within 24 hours. Take
the case #5d3cce3 in Table II as an example. GREBE found the
use-after-free read error in netif_napi_add in 9 hours. On the
contrary, GREBE without mutation optimization spent more
than 3 days. The original Syzkaller and its variant performed
even worse, failing to find this error behavior within the 7-day
time window. This result empirically shows that the design of

4Since the new error behaviors discovered by Syzkaller and its variant is too
few compared with the other fuzzers, we conservatively use 7 days (7×24=168
hours) to represent the non-discovered error behaviors when computing the
time.

SYZ ID Exploitability Change SYZ ID Exploitability Change
d1baeb1 [27] LL → L (2) ? de28cb0 [28] LL → L (5)
8eceaff [29] LL → L (2) ? f56bbe6 [30] LL → L (1)
bb7fa48 [31] LL → L (1) f0ec9a3 [32] LL → L (1)
d767177 [33] LL → L (2) 5d3cce3 [8] LL → L (2) ?
460cc94 [34] LL → L (1) 692a8c2 [12] LL → L (12) ?
0df4c1a [35] LL → L (3) 4cf5ee7 [36] LL → L (2)
229e0b7 [25] LL → L (3) 502c872 [37] LL → L (1)
163388d [38] LL → L (1) b36d7e4 [39] LL → L (1)
bdeea91 [23] LL → L (1) 1fd1d44 [40] LL → L (1)
b9b37a7 [41] LL → L (4) 695527b [42] LL → L (1)
0d93140 [43] LL → L (1) 85fd017 [44] LL → L (4) ?
b0e30ab [45] LL → L (1) 6a03985 [46] LL → L (3) ?
d5222b3 [47] LL → L (1) 575a090 [48] LL → L (1)
3a6c997 [49] L → L (10) 27ae1ae [50] L → L (1)
cbb2898 [51] L → L (1) 4bf11aa [52] L → L (1)
e4be308 [53] L → L (11) 7022420 [11] L → L (1)
3b7409f [54] L → L (1) ddaf58b [55] L → L (2)

TABLE III: The summary of exploitation potential improve-
ment. In the column of ”Exploitability Change”, LL means
the original error behavior is less likely to be exploitable.
The letter L means the newly discovered error behaviors
are likely to be exploitable. The number in the parenthesis
represents the amount of newly identified error behaviors tied
to probably exploitable. The star ? denotes the bugs for which
we have developed exploits based on the newly discovered
error behaviors and their provided primitives.

object-driven fuzzing and mutation optimization in GREBE,
to a large extent, can save the time and resources for the
discovery of new error behaviors.

C. Security Implication

Exploitation Potential Exploration. Recall that we design
GREBE to explore a kernel bug’s multiple error behaviors.



Exploitation Potential Kernel Bug Errors

Likely to exploit KASAN (e.g., use-after-free,
out-of-bound access, double-free)

Less likely to exploit BUG, GPF, NULL ptr dereference,
panic, WARN, wrappers (e.g., pr err)

TABLE IV: The summary of the types of error behaviors in
bug reports and their corresponding exploitation potential.

With the multiple manifested behaviors in hand, we expect
some newly exposed error behaviors to indicate a higher
exploitation potential for a kernel bug (e.g., finding an out-
of-bound write error behavior for a kernel bug that orig-
inally manifests less-likely-to-exploit error behavior – null
pointer dereference). As a result, we further evaluate GREBE’s
capability in exploitation potential exploration. To do this,
we first recruited 20+ security researchers and conducted a
user study (detailed in Appendix A) under the approved IRB
(STUDY00008566). From the user-study results, we obtain
the relationship between a manifested error behavior and the
exploitation potential. As is depicted in Table IV, each error
behavior is categorized into either “likely to exploit” or “less
likely to exploit”. Using this error-behavior-to-exploitability
mapping obtained from security researchers, we then compare
our newly identified error behaviors with those specified in
their original bug reports.

In our dataset, we have 60 Linux kernel bugs. For 44 bugs,
their reports gathered from Syzbot demonstrate error behaviors
associated with less-likely-to-exploit. For the other 16 kernel
bugs, their reports expose errors tied to likely-to-exploit. As we
can observe from Table III, for 26 bugs (about 60% of 44 less-
likely-to-exploit bugs), GREBE could find at least one likely-
to-exploit error behavior. From that newly identified error
behavior, one could imply a higher exploitation potential. This
observation indicates that GREBE can help security researchers
better infer kernel bugs’ exploitation potential.

Among the rest 16 kernel bugs originally tied to likely-
to-exploit, there are 8 bugs (50%). By using GREBE, one
can identify their other likely-to-exploit error behaviors. We
argue, this does not mean that GREBE has no utility for these
kernel bugs. Taking a closer look at the three cases #e4be308

↪→ , #3b7409f, and #ddaf58b. Their original reports all indicate
that the bug provides an ability to perform a write to an
unauthorized memory region. However, the newly discovered
error behaviors enable the adversaries to perform unauthorized
read/write at different memory regions. Take the case #3619dec5

↪→ for example. Its new error behavior can write data to the
kmalloc-64 from 56th to 60th bytes, whereas its error behavior
shown in the report corrupts the first eight bytes of kmalloc-64.
This enlarged memory access potentially diversifies the way
to perform exploitation and bypass mitigation.

For the kernel bugs of our selection that do not show
exploitation potential improvement (i.e., 26 bugs = 60-26-8),
we argue that this does not dilute the contribution of GREBE.
First, based on the aforementioned small-scale evaluation on

the false negatives of GREBE, it is very likely that all the
possible error behaviors of these bugs are exposed. In this
situation, there are fewer chances for a security researcher to
find unknown error behaviors indicating a higher exploitation
potential. Second, although the exploitation potential remains
unchanged, GREBE manages to find many other error behav-
iors (e.g., #1fd1d44 in the table at [26]). These additional error
behaviors and the corresponding fuzzing programs can poten-
tially facilitate the root cause diagnosis, as is demonstrated
in [7].
Real-world impact. For all the 44 kernel bugs (the original
reports of which implies less-likely-to-exploit), we performed
an exhaustive search and found no work demonstrating their
exploitability in the past. As described above, using GREBE,
we can turn 26 of them from less-likely-to-exploit to likely-
to-exploit. For these 26 kernel bugs, we further explore their
exploitability manually. We surprisingly discovered that 6 out
of the 26 bugs (illustrated by a star sign in Table III) could
be turned into fully exploitable kernel vulnerabilities. Take
the case #6a03985 as an example. Its error behavior initially
reported by Syzkaller is a WARNING implying less-likely-to-
exploit. Using GREBE, we identified a use-after-free error
behavior for this bug. Starting from this newly discovered error
behavior and the primitive the error behavior provides, we
successfully demonstrated the bug’s exploitability, including
leaking sensitive data (e.g., encryption key and hashed pass-
word), bypassing KASLR, and redirecting the kernel execution
for privilege escalation. We have responsibly disclosed the
bug details and our working exploits with the corresponding
vendors, resulting their rapid fix adoption. RedHat assigned
one of the exploitable bugs with CVE-2021-3715 for keeping
track. To facilitate the future study, we release our exploits
at [13].

VII. RELATED WORK

This section summarizes the works most relevant to ours.
Kernel fuzzing. Syzkaller [4] and Trinity [6] are two popular
code-coverage-based kernel fuzzers. While doing fuzzing, they
use templates to specify the dependency between system calls
and the expected value range of system calls’ arguments. How-
ever, with only explicit dependencies between system calls,
it is not enough to produce a high-quality fuzzing program
because the OS kernel is a massive system with a complicated
internal state transition. IMF [56] optimizes kernel fuzzing by
tracking the system calls and analyzing them coordinately with
type information to infer the kernel system’s internal states.
This approach, unfortunately, has the limitation of extracting
internal dependencies inside the kernel. As such, taking a step
ahead, Moonshine [17] leverages light-weight static analysis
to detect internal dependencies across different system calls
from system call traces of real-world programs. Recently,
HFL [18] introduces hybrid fuzzing to the kernel, performing
point-to analysis, and symbolic checking to figure out precise
constraints between system state variables. To support closed-
source kernel, instead of relying on the kernel interface to
collect code coverage, kAFL [5] proposes a fuzzing framework



that employs a hardware-assisted code coverage measurement.
Although the kernel fuzzers above demonstrate effectiveness in
finding kernel bugs, like Syzkaller, their design inevitably fails
multiple error behavior exploration simply because they rely
on code coverage to guide kernel fuzzing tasks, making our
task inefficient. In this work, GREBE introduces a new design
that utilizes critical kernel objects to improve effectiveness and
efficiency for multiple error behavior exploration.

Apart from kernel fuzzers aiming to find various types of
bugs in the entire system, there are works focusing on specific
kernel modules or bug types. DIFUZE [20] uses static analysis
to effectively fuzz device drivers in the Android kernel.
Periscope [57] fuzzes a device driver not via system call
interfaces but mutating input space over I/O bus. Razzer [22]
combines static and dynamic testing to reach program sites
where race condition bugs may exist. KRACE [21] further
customizes to find race condition bugs in the file system. While
they demonstrate their utility in hunting bugs in specific kernel
modules, it is difficult to generalize these techniques to explore
kernel bugs’ error behaviors.

SemFuzz [19] is the only work that aims to trigger a
known kernel bug through kernel fuzzing to the best of
our knowledge. However, this technique is not designed to
diversify the paths and contexts for triggering the bug but
simply to enable bug reproduction. Therefore, it is not suitable
for the problem we address.
Exploitability assessment. Automating exploit development
can also facilitate exploitability assessment.

For user space programs, Brumley et al. [58], [59] used
preconditioned symbolic execution to generate exploits for
stack overflow and format string vulnerabilities. Bao et al. [60]
recently proposed shellcode layout remediation and path
kneading approaches to transplant existing shellcode. The
Shellphish team developed PovFuzzer and Rex to turn a crash
to an exploit [61], [62], [63]. Heelan et al. focus on heap
buffer overflow vulnerabilities in user space programs. In [64],
they use regression test to learn how to automate heap layout
manipulation so that one could corrupt the sensitive pointers.
In [65], they further improve their proposed approach by using
a genetic algorithm to replace the random search algorithm
for exploiting heap overflow vulnerabilities in language inter-
preters. Sharing the similar goals with the works [64], [65],
Revery [66] also explores exploitable memory layouts for vul-
nerabilities in userspace programs. It utilizes fuzz testing along
with a program synthesis method to guide the construction of
a working exploit. Insu et al. [67] discovers new exploitation
primitives in the heap allocator. They provide heap operations
and attack capabilities as actions, driving the heap allocator to
execute until primitives such as arbitrary write or overlapped
chunks are identified. Unlike the works summarized above,
GREBE focuses on a bug’s exploitability assessment in the ker-
nel space which is naturally more sophisticated than userland
programs. Besides, our work is not designed for constructing
exploitable memory layout or synthesizing working exploits.
Rather, it focuses on exploring all the possible error behaviors
for a single kernel bug.

Regarding the kernel space, existing exploitability assess-
ment works are mainly in three directions. The first direction is
to obtain exploitable primitives. Xu et al. [68] exploit use-after-
free vulnerabilities using two memory collision mechanisms
to perform heap spray in the kernel. SLAKE [69] facilitates
the exploitation of slab-based vulnerabilities by first building a
database of kernel objects and then systematically manipulat-
ing slab layout using the kernel objects in the database. Lu et
al. [70] exploits use-before-initialization vulnerabilities using
deterministic stack spraying and reliable exhaustive memory
spraying. As a follow-up work, Cho et al. [71] further propose
to use BPF functionality in the kernel for stack spraying. The
second direction is to bypass mitigations in the kernel. For
example, ret2dir [72] takes advantage of physical memory
which is mapped to kernel space for payload injection. KE-
PLER [73] leverages communication channels between kernel
space and user space (e.g., copy_from/to_user) to leak stack
canary and inject ROP payload to kernel stack. ELOISE [15]
bypasses KASLR and heap cookie protector using a special
but pervasive type of structure. The third direction is to explore
the capability of vulnerabilties, which is most related to our
work. In this direction, FUZE [74] explores new use sites for
use-after-free vulnerabilities using under-context fuzzing and
identifies exploitable primitives implied by the new use sites
using symbolic execution. KOOBE [75] extracts capabilities
of a slab-out-of-bound access vulnerability manifested in the
PoC program and uncover hidden capabilities using capability-
guided fuzzing. The techniques developed in both works are
customized to the characteristics of a specific vulnerability
type and are difficult to generalized to others. Besides, they
require to manually diagnose root cause of the bug while
GREBE does not. Moreover, they cannot explore possible error
behaviors for a single bug, which is the main contribution of
GREBE.

VIII. CONCLUSION AND FUTURE WORK

We design and develop an object-driven kernel fuzzing
method. Using our proposed technique, security analysts could
explore various contexts and paths toward a target kernel bug
and exhibit the bug’s many error behaviors. The newly iden-
tified error behaviors might have higher exploitation potential
than the one shown in the original report. It indicates the bug’s
exploitability escalation. As such, we safely conclude, given a
kernel bug, the object-driven kernel fuzzing method could help
security analysts better understand and infer exploitability for
a given kernel bug.

In this work, we focus on developing technical methods
to expose multiple error behaviors only for Linux kernel
bugs. Thus, one of our future directions is to explore the
proposed method against the bugs on other kernels (e.g.,
XNU, FreeBSD). While our design is general and not specific
for Linux, we argue intensive engineering efforts are still
necessary. First, the debugging features such as KASAN are
not always available on other OSes (e.g., no KASAN support
for FreeBSD). Even if GREBE could trigger the bug through
different paths or contexts, the lack of debugging features



would lead to the failure of reporting the severe error behavior
exposed through these new paths or contexts. Second, existing
fuzzing tools and templates are mainly designed for Linux
kernel and, to enable GREBE on other OSes, we will have
to port fuzzing tools to other OSes and enrich the fuzzing
templates accordingly (e.g., no open-sourced Syzkaller support
for XNU). As part of our future work, we will devote our
energy to these engineering efforts.
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APPENDIX

A. Detail of User Study

To find the relationship between a kernel bug’s error behav-
ior and its exploitation potential, we designed a survey (i.e.
Figure 3) and conducted a user study with IRB approval. In
our survey, we first asked the subjects’ backgrounds, including
their occupations and expertise levels. Following the back-
ground inquiry, we investigated whether the participants agree
that, in most scenarios, the kernel error behaviors like double
free, use-after-free, and out-of-bound access imply higher
exploitation potential than the kernel error behaviors such as
BUG, GPF, WARN, and NULL pointer dereference. We drew
comparison between different error behaviors in the survey
and provided examples to help the participants understand the
context. For each comparison pair, the participant is required
to briefly explain the reason if he/she disagrees with our
classification.

We started our recruitment from CTF players in top-tier
teams [76]. The invited players were encouraged to distribute
our survey to knowledgeable experts further. We offer a $10
gift card for each participant to motivate the completion of
our survey. In total, we managed to recruit 21 security experts
participating in our survey. Among these human subjects, 12 of
them claim themselves as CTF players or exploit practitioners.
14 are researchers in academia. 2 are members of blue team
in an enterprise. Note that one participant can have multiple
roles. Besides, 10 participants have experience in crafting
Linux kernel exploits, 4 reading write-ups or exploits, and
7 debugging kernel and developing patches. As the subjects
participating in the survey have diverse backgrounds, we deem
that the survey results reflect the viewpoint of most security
experts regarding how to assess the exploitability of bugs
according to their error behaviors.

1) Which of the following roles do you identify yourself
as (multiple choices)?
a. CTF player/exploit practitioner
b. Academia researcher
c. Security analyst in enterprise blue team
d. Official in government agency

2) How’s your experience in Linux kernel exploitation
a. I’ve debugged kernel or developed kernel patches but
done nothing about exploitation
b. I’ve read some writeups
c. I’ve written some exploits for CTF challenges or
real-world vulnerabilities

3) What’s the easiest way to get in touch with you? We
ask this question for gift card sending and potential
follow-up question. We promise to keep privacy and
won’t identify you via the contact.

4) Do you agree that, without going into details, double
free behavior implies higher exploitability than BUG in
most cases?
a. Yes
b. No
c. I don’t know

Fig. 3: Sampled questions from the exploitability survey
form [77]

Our survey showed that 18 out of 21 participants agree
that, for all comparison pairs, error behaviors like double-
free, use-after-free, and out-of-bound access imply higher
exploitation potential. For the comparison between double-
free and BUG/GPF, use-after-free and BUG/GPF, out-of-
bound access, and BUG/GPF/WARN/NULL ptr deref, there
are 1/2, 2/3, and 3/2/1/1 participants who disagree with our
classification, respectively. They explained that, in the situation
where the attacker can control the corruption range, errors like
GPF/BUG/WARN could imply higher exploitation potential.
In our user study, we further contacted those participants for
further clarification. In the follow-up interview, they conceded
that though they have encountered some particular cases, they
agree that our classification works in most situations. As such,
we carefully conclude that there is a shared sense among
security analysts. That is, compared with error behaviors
like GPF/WARN/BUG/NULL ptr deref, kernel error behaviors
such as double free, use-after-free, and out-of-bound imply
higher exploitation potential.

B. Procedure of Error Triaging

When exploring multiple error behaviors for a target bug,
GREBE may hit other bugs, demonstrating error behaviors
that do not result from the target bug. To ensure the newly
identified error behaviors are truly tied to the bug of our
interest, error triaging is needed. As we mentioned earlier,
there has not yet been accurate error triaging methods. We,
therefore, seek the help of kernel professionals.
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In this work, our professional team performed error triaging
by following the procedure below. Given a bug of our interest,
the team first finds the bug’s patch and applies it to the
corresponding kernel image. Then, for each newly identified
error behavior, the team executes the PoC program tied to
that newly discovered error behavior. If the patch fails to
block the demonstration of the error (i.e., the patched kernel
still crashes), the team excludes that error behavior with
the conclusion that it is not associated with the target bug.
Otherwise, the team will put their effort into inspecting the
execution of the PoC program. In the inspection phase, the
team will manually examine the bug patch and extract the
condition of the bug triggering. With this triggering condition
in hand, the team further examines the execution of the PoC
program. If the execution aligns with the triggering condition,
the team safely concludes the newly discovered error is tied
to the bug of our interest. To minimize the possible human
mistake, we asked the team to form a unanimous agreement
before we associate that new error behavior to the bug of our
interest.

It should be noted that, like Syzkaller, when GREBE triggers
a bug and demonstrates an error behavior, it may not generate
a PoC program allowing the team to follow the procedure
above. In this situation, the team will take a close look at the
call stack of the kernel panic. Following the call stack, the
team will manually track the kernel execution reversely and
infer if the panic results from the same root cause. In this
manual analysis phase, the team utilizes several heuristics to
align an error with the bug. First, the team will confirm the
functions in the call stack are relevant to the functions where
the patch is applied. Second, the team will ensure the panic
site is related to the variables that the patch influences.

As we can see, the rationale of the triaging procedure above
is as follows. We assume that the patch could successfully
block the triggering of the bug and thus prevent it from
exhibiting the corresponding errors. If the patched kernel
image still demonstrates errors, the manifested error is not
likely to associate with the bug of our interest. However, it
should be noted that the procedure above might mistakenly
exclude some error behaviors tied to the bug of our interest
simply because the patch might not be correct, and we falsely
rule out the corresponding error behaviors. As a result, we
emphasize that the error behaviors we identified could mean
only the lower bound of the total number of all possible error
behaviors. However, as we showed in Section VI, the lower
bound still provides good utility, helping a security researcher
explore multiple error behaviors for a given kernel bug.

C. Detail of Distance Measurement & Hypothesis Validation

Section VI-B hypothesizes that the distance (number of ba-
sic blocks) between a bug’s root cause and the corresponding
error site may correlate with the false negatives of GREBE.
Here, we detail how we measure the distance and present our
hypothesis testing result.

It is challenging to measure the distance between the root
cause and the error site for a given bug. The Linux kernel is

a multi-process system. The system call that triggers the root
cause could be different from the one that brings about the
error. As a result, we address this issue as follows. First, we
identify all the lines of the kernel code that the patch changes.
Second, we examine which of these lines is executed first when
replaying the PoC program. In this work, we treat that line as
our root cause site. If the patch site and the error site share
the same system call, we simply count the basic blocks in
between. For the kernel bug, the root cause of which and the
error site reside in different system calls, we combine the basic
blocks of both system calls. More specifically, we take the
total number of basic blocks that the error-site-related system
call has executed. Then, we add this number to the number
of basic blocks that the root-cause-related system calls have
executed (right after the root cause is triggered and before the
error occurs).

In Table V (“N of BB” column), we show the distance
measure for the error manifested in the bug’s original report.
We mark the distance measure with a star sign if that bug’s root
cause and error site do not share the same system call. As we
can observe from the table, there is no clear relation between
the distance and the false positive. GREBE demonstrates false
positives regardless of whether the distance is long or short
enough. In addition, the false-negative occurrence does not
depend upon whether root cause and error site share (or not
share) the same system call. With these observations, we safely
reject our hypothesis.



SYZ ID N of BB New Behaviors Discovered Manually New Behaviors Discovered by GREBE

1fd1d44[40] 5128 ? general protection fault in skcipher walk done general protection fault in skcipher walk done

695527b[42] 2313 ?

KASAN: use-after-free Write in bpf tcp close KASAN: use-after-free Write in bpf tcp close
BUG: unable to handle kernel paging request in qlist free all BUG: unable to handle kernel paging request in qlist free all

WARNING: ODEBUG bug in sock hash free -
ebcbbb6[78] 1 - -
f7649aa[79] 38 - -

6a03985[46] 2

general protection fault in hfsc unbind tcf general protection fault in hfsc unbind tcf
WARNING: refcount bug in tcf action put WARNING: refcount bug in tcf action put

KASAN: use-after-free Read in route4 get KASAN: use-after-free Read in route4 get
WARNING: refcount bug in route4 destroy WARNING: refcount bug in route4 destroy

KASAN: null-ptr-deref Read in route4 destroy KASAN: null-ptr-deref Read in route4 destroy
KASAN: use-after-free Read in route4 destroy KASAN: use-after-free Read in route4 destroy

27ea7ae[80] 1 - -

d5222b3[47] 652 ?

WARNING: bad unlock balance in ucma destroy id WARNING: bad unlock balance in ucma destroy id
general protection fault in rdma listen general protection fault in rdma listen

KASAN: use-after-free Read in addr handler -
KASAN: use-after-free Read in cma cancel operation -

KASAN: use-after-free Read in rdma listen KASAN: use-after-free Read in rdma listen
BUG: corrupted list in rdma listen BUG: corrupted list in rdma listen

de28cb0[28] 2

BUG: corrupted list in neigh mark dead BUG: corrupted list in neigh mark dead
KASAN: use-after-free Read in neigh mark dead KASAN: use-after-free Read in neigh mark dead

KASAN: slab-out-of-bounds Read in neigh mark dead KASAN: slab-out-of-bounds Read in neigh mark dead
KASAN: use-after-free Read in neigh create KASAN: use-after-free Read in neigh create

KASAN: slab-out-of-bounds Read in neigh create KASAN: slab-out-of-bounds Read in neigh create
KASAN: use-after-free Read in neigh change state KASAN: use-after-free Read in neigh change state

f56bbe6[30] 2 KASAN: slab-out-of-bounds Read in qrtr endpoint post KASAN: slab-out-of-bounds Read in qrtr endpoint post
b7f4861[81] 1 - -

e4be308[53] 857 ?

KASAN: slab-out-of-bounds Write in tgr192 final KASAN: slab-out-of-bounds Write in tgr192 final
KASAN: slab-out-of-bounds Write in tgr160 final KASAN: slab-out-of-bounds Write in tgr160 final

KASAN: slab-out-of-bounds Write in crypto sha3 final KASAN: slab-out-of-bounds Write in crypto sha3 final
KASAN: slab-out-of-bounds Write in rmd320 final KASAN: slab-out-of-bounds Write in rmd320 final
KASAN: slab-out-of-bounds Write in wp384 final KASAN: slab-out-of-bounds Write in wp384 final
KASAN: slab-out-of-bounds Write in sha512 finup KASAN: slab-out-of-bounds Write in sha512 finup

KASAN: slab-out-of-bounds Write in sha1 finup KASAN: slab-out-of-bounds Write in sha1 finup
KASAN: slab-out-of-bounds Write in sha1 final KASAN: slab-out-of-bounds Write in sha1 final

KASAN: slab-out-of-bounds Write in sha256 final KASAN: slab-out-of-bounds Write in sha256 final
KASAN: slab-out-of-bounds Write in rmd160 final KASAN: slab-out-of-bounds Write in rmd160 final
KASAN: slab-out-of-bounds Write in sha256 finup KASAN: slab-out-of-bounds Write in sha256 finup

d1baeb1[27] 1043 ?

general protection fault in skb release data general protection fault in skb release data
general protection fault in skb clone -

KASAN: wild-memory-access Read in skb copy ubufs KASAN: wild-memory-access Read in skb copy ubufs
KASAN: slab-out-of-bounds Write in pskb expand head KASAN: slab-out-of-bounds Write in pskb expand head

7022420[11] 64 KASAN: slab-out-of-bounds Write in default read copy kernel KASAN: slab-out-of-bounds Write in default read copy kernel

0df4c1a[35] 553
KASAN: use-after-free Read in remove wait queue KASAN: use-after-free Read in remove wait queue

KASAN: use-after-free Read in corrupted KASAN: use-after-free Read in corrupted
KASAN: use-after-free Read in eventfd release KASAN: use-after-free Read in eventfd release

badc913[82] 1510 ? - -
33913c9[83] 1 KASAN: use-after-free Read in do madvise KASAN: use-after-free Read in do madvise
28741ff[84] 2 WARNING in snd usbmidi submit urb/usb submit urb WARNING in snd usbmidi submit urb/usb submit urb

0df4c1a[35] 6

BUG: unable to handle kernel paging request BUG: unable to handle kernel paging request
in pcpu freelist populate in pcpu freelist populate

BUG: unable to handle kernel paging request in htab map alloc BUG: unable to handle kernel paging request in htab map alloc
BUG: unable to handle kernel paging request in bpf lru populate BUG: unable to handle kernel paging request in bpf lru populate
KASAN: vmalloc-out-of-bounds Write in pcpu freelist populate KASAN: vmalloc-out-of-bounds Write in pcpu freelist populate

KASAN: vmalloc-out-of-bounds Write in bpf lru populate KASAN: vmalloc-out-of-bounds Write in bpf lru populate
KASAN: vmalloc-out-of-bounds Write in htab map alloc KASAN: vmalloc-out-of-bounds Write in htab map alloc
KASAN: vmalloc-out-of-bounds Read in htab free elems KASAN: vmalloc-out-of-bounds Read in htab free elems

BUG: unable to handle kernel paging request in htab free elems -

TABLE V: The results of false negative analysis. The “SYZ ID” column is the case ID. The second column is the number of
basic block between the root cause and the crash site. The star ? right after the number indicates that the site of root cause
and crash are from different syscalls. Otherwise, they are from the same syscall. The third and fourth column represent the
new behaviors discovered manually and by GREBE, respectively. The dash “-” means no such behavior is discovered in the
corresponding way. It should be noted that the cases like #ebcbbb6 have two dashes in a row. It is because no new error behavior
was discovered either manually or by GREBE.
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