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Abstract
The Linux kernel’s growth introduces daily bugs that are

often detected and eliminated using code analyzers. How-
ever, creating accurate Linux patches remains challenging
and poses security risks. To address this, we manually ana-
lyzed 182 incorrectly developed Linux kernel patches and
discovered that the inaccuracies usually result from changes
to variable read and write operations by the patch. Based on
this finding, we created KLAUS, a new method for evaluating
patch quality.
KLAUS leverages abstract interpretation to extract modified

read and write operations caused by the patch in the Linux
kernel. It combines these alterations with branch-resolving
mechanisms to guide a kernel fuzzer toward relevant code
and contexts. Testing KLAUS on numerous real-world Linux
kernel patches demonstrates its superior effectiveness and
efficiency in detecting incorrectly developed patches. So far,
KLAUS has identified and reported 30 incorrect patches to
the Linux community, some of which could enable privilege
escalation on Android and Ubuntu systems.

1 Introduction

The Linux kernel is complex and prone to bugs, as evidenced
by the high number of bugs identified by various automated
tools (e.g., [39, 48, 51–53, 59]). This highlights the need for
continual bug fixing by the kernel community, especially for
security-critical issues. As the Linux kernel forms the founda-
tion for numerous computing platforms, fixing bugs is always
a top priority.

To tackle the large volume of kernel bugs, the Linux com-
munity relies on crowd-sourcing to remediate them. Over the
past ten years, thousands of bugs have been analyzed and
fixed by numerous kernel researchers. Despite these efforts,
many kernel patches prove to be challenging to develop cor-
rectly on the first try. From 2012 to 2022, over 3,500 kernel

patches that aimed to address one issue actually introduced
new bugs. Unfortunately, some of these new bugs were even
more exploitable than the original bugs they were trying to
fix, as demonstrated in Section 2.2 and 7.4.

Our manual analysis of hundreds of incorrect kernel patches
reveals that the existence of these incorrect patches can be
attributed to two main factors. First, the complexity of the
Linux kernel makes it difficult for researchers and developers
to ensure their patches do not disrupt the existing kernel logic.
Second, there is a lack of effective mechanisms for assess-
ing patch quality. Today, the only way to evaluate a patch
is through regression testing, where the patch is applied to
the kernel and its ability to eliminate the original bug’s error
behavior is tested by re-running the trigger input. However,
as demonstrated in the following sections, the absence of an
error behavior does not guarantee the patch’s correctness.

One solution to address this pressing issue is to use widely
adopted kernel fuzzing techniques such as Syzkaller [53],
SyzVegas [54], StateFuzz [60], and HFL [43] to test the
patched kernel. However, using these methods may result
in inefficiencies as they often prioritize higher kernel code
coverage, leading to a waste of time and resources on code
that has no relation to the newly introduced bug.

In this work, we propose a new technical method to as-
sess kernel patches, called KLAUS (standing for KerneL pAtch
qUality aSsessor). Unlike traditional kernel fuzzing tech-
niques, KLAUS first conducts a static analysis of the code
before and after the patch is applied. It then uses abstract inter-
pretation to track changes in read and write operations made
by the patch. Our manual analysis of 182 incorrect Linux
kernel patches, described in Section 3, shows that newly intro-
duced bugs in incorrect patches primarily result from changes
in read and write operations. Based on this observation, our
static analysis informs a directed fuzzing mechanism that uses
changes in read and write operations as indicators to guide
the fuzzer toward code and context relevant to the patch.
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1 // description
2 nfc: fix refcount leak in llcp_sock_connect()
3 Fixes: c7aa12252f51 ("NFC: Take a reference ...")
4 // diff file
5 diff --git a/net/nfc/llcp_sock.c b/net/nfc/

llcp_sock.c
6 --- a/net/nfc/llcp_sock.c
7 +++ b/net/nfc/llcp_sock.c
8 @@ -704,6 +704,7 @@ static int llcp_sock_connect()
9 ...

10 + nfc_llcp_local_put(llcp_sock->local);
11 }

Listing 1: The snippet of commit 8a4cd82d62b5.

While sharing the same goal of existing directed
fuzzing schemes in the userspace (e.g., SemFuzz [58] and
AFLGo [34]), our method – also recognized as a directed
fuzzing mechanism – does not primarily focus on optimizing
input to reach specific program sites. Going beyond reacha-
bility, it also takes into account the order and type of patch-
altered read and write operations during kernel fuzzing. Ad-
ditionally, our method utilizes branch-resolving mechanisms
to further improve KLAUS’s ability to detect incorrect patches.
Our evaluation shows that KLAUS outperforms Syzkaller in
detecting incorrect patches. With KLAUS, we discovered 30
incorrect patches from hundreds of Linux kernel patches. So
far, 25 false patches have been confirmed and fixed. Out of all
the bugs we discovered, we also found 3 that offered attackers
higher exploitability than the original bugs. We successfully
demonstrated privilege escalation against the latest Ubuntu
and Android systems using these 3 vulnerabilities.

This work, to the best of our knowledge, is the first of
its kind to explore the correctness of Linux kernel patches.
It highlights a concerning reality that an improperly devel-
oped patch can result in a more severe security vulnerability.
KLAUS, as a new testing tool, offers an effective and efficient
method for uncovering bug patch incorrectness in the Linux
kernel. Moreover, it empowers kernel developers to evaluate
the quality of their patches, potentially reducing the risk of
transforming a non-exploitable bug into a highly exploitable
vulnerability.
In summary, this paper makes the following contributions.

• We have conducted a thorough examination of 182 incorrect
Linux kernel patches and uncovered crucial insights about
the root causes of incorrect patches. Our findings highlight
the limitations of current methods for identifying incorrect
patches and inspired the development of KLAUS.

• We propose a new method that leverages abstract interpre-
tation to capture the change of the variables’ read and write
operations made by a kernel patch. Using the extracted read-
and-write operation alteration, we also propose a new di-
rected fuzzing mechanism for incorrect Linux kernel patch
identification.

1 struct nfc_llcp_sock {
2 struct nfc_llcp_local *local; // NFC device
3 };
4
5 void *nfc_llcp_local_get(struct nfc_llcp_local *

local) {
6 kref_get(&local->ref); // local->ref++
7 }
8
9 int nfc_llcp_local_put(struct nfc_llcp_local *

local) {
10 if (local == NULL)
11 return 0;
12 // local->ref-- and free local via
13 // local_release() if local->ref == 0
14 return kref_put(&local->ref, local_release);
15 }
16
17 static int llcp_sock_bind(struct nfc_llcp_sock *

llcp_sock) {
18 nfc_llcp_local_get(llcp_sock->local);
19 if (llcp_sock->ssap == LLCP_SAP_MAX) {
20 // 1st patch which is incorrect
21 nfc_llcp_local_put(llcp_sock->local);
22 llcp_sock->sock = NULL; // 2nd patch
23 goto put_dev;
24 }
25 put_dev:
26 return -EADDRINUSE;
27 }
28
29 void nfc_llcp_sock_free(struct nfc_llcp_sock *sock

) {
30 if (sock->local != NULL)
31 nfc_llcp_local_put(sock->local);
32 }

Listing 2: The code snippet of the Linux kernel patches. The
1st patch in commit 8a4cd82d62b5 fixes a memory leak bug but
incorrectly introduces a double-free vulnerability. This new
vulnerability resided in the kernel for almost two months until
finally being fixed by the 2nd patch in commit c61760e6940d.

• We implemented KLAUS and thoroughly evaluated its per-
formance by using hundreds of real-world Linux kernel
patches. We have uncovered and reported 30 incorrectly de-
veloped and/or deployed kernel patches, resulting in many
of these patches being immediately re-patched. Upon accep-
tance of this submission, we plan to make KLAUS available
to the community by open-sourcing it.

2 Background & Working Example

This section delves into the background of Linux kernel
patches. To clarify the issue of improperly created patches,
we also provide a real-world example of how a non-critical
kernel bug can turn into a vulnerable Linux kernel exploit.
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2.1 Kernel Commit and Patch

As shown in List 1, a kernel commit contains two major parts.
The first part is a description starting with a title (line 2). If the
commit is to patch a bug, the description will include a line
with “Fixes:” as the prefix (line 3). The commit ID following
this prefix is a previous commit that introduces the bug. The
second part is a diff file which lists code modification to the
kernel. It illustrates the location of code modification - in
function llcp_sock_connect (line 8) of file net/nfc/llcp_sock.c

(line 5-7) from kernel code line 704. The code modification
is further specified in line 10 which starts with a “+” symbol
and inserts a calling to kernel function nfc_llcp_local_put.
Correspondingly, if a line will be removed, it starts with a “-”
symbol in the diff file. By applying the code modification in
the diff file, the vulnerable kernel is patched.

A patch typically goes through three phases before finally
being merged into the upstream kernel. In the first phase, ker-
nel developers craft a patch draft in the local workspace and
post it to a corresponding mailing list for review and discus-
sion. If other developers and maintainers reach an agreement,
then this patch will be merged into the git tree of the ker-
nel subsystem that contains the bug. Finally, when a merge
window is open, all patches in the subsystem will be pushed
to the upstream kernel. In the second and third phases, auto-
matic testing will be performed to examine the patch quality.
Common testing techniques include regression testing (e.g.,
kselftest [8], 0-day kernel test [1], and KernelCI [7]) and
Syztest [25]. They replay the input PoC program that trig-
gers the bug against the patched kernel. If no kernel error is
observed, they conclude the correctness of the patch. How-
ever, as we will show in the following session, these existing
techniques are insufficient to detect mistakes in patches.

2.2 From Memory Leak to double-free

The patch shown in List 1 is to fix a memory leak bug. In
List 2, we include other relevant kernel code illustrate the root
cause. As shown in List 2, all nfc_llcp_sock sockets share one
NFC device which is represented in the local field (line 2). To
use the device, the kernel calls the function nfc_llcp_local_get

(line 5) to increase its reference count (refcount for short)
of nfc_llcp_sock->local. After finishing the usage, the kernel
calls the function nfc_llcp_local_put (line 9) to decrease the
refcount for balance. When the refcount is decreased to zero,
it means the NFC device is no longer used. Then, the kernel
will call function local_release to free nfc_llcp_sock->local

(line 14).
The root cause of the memory leak is in function

llcp_sock_bind. In line 18, the refcount of llcp_sock->local

is increased to use NFC device. However, if llcp_sock->ssap

is equal to LLCP_SAP_MAX (line 19), the kernel jumps to the
label put_dev and returns the caller without decreasing the
refcount, resulting in imbalance. As a consequence, the mem-

ory referred by llcp_sock->local is never freed and reclaimed,
causing a memory leak. To rebalance refcount, the patch
shown in List 1 inserts the call to nfc_llcp_local_put (line 21)
in function llcp_sock_bind.

This patch is straightforward but incorrect because it mis-
takenly introduces a double-free vulnerability. To be specific,
after the NFC device is probed, its refcount is initialized to
1. Then, the kernel creates two nfc_llcp_sock sockets. Bind-
ing the 1st socket to the device, the kernel executes lines
18-21, which increases the refcount to 2 (line 18) and de-
creases it to 1 (line 21). The refcount is well maintained
so far. However, when the 1st socket is closed, the kernel
will call function nfc_llcp_sock_free (line 29) to destroy it.
Function nfc_llcp_sock_free further calls nfc_llcp_local_put,
decreasing the refcount to 0 and freeing the memory refer-
enced by nfc_llcp_sock->local. Recall that all nfc_llcp_sock

sockets share one NFC device by having their local refer to
the same nfc_llcp_local. After the nfc_llcp_local is freed, the
local field of the 2nd socket becomes a dangling pointer. Then,
binding the 2nd socket, the kernel decreases the refcount of
nfc_llcp_local->local to 0 again in line 21, which frees the
memory referenced by nfc_llcp_local->local for the second
time.

Compared with memory leak, double-free is widely be-
lieved to be more exploitable [56]. This double-free was
assigned with CVE-2021-23134 [5] and kernel developers
crafted another patch with commit c61760e6940d [11] for reme-
diation. This 2nd patch nullifies nfc_llcp_sock->local in line
22 so that nfc_llcp_local_put is not called in line 31 when the
1st socket is destroyed. As such, the refcount is not decreased
to 0, avoiding mistaken free of the memory referenced by
nfc_llcp_local->local.

In summary, the 1st patch in commit 8a4cd82d62b5 [18] tries
to fix a memory leak but incorrectly introduces a new double-
free vulnerability. This new vulnerability was not detected by
any testing techniques and resided in the kernel for almost
two months. To fix the new vulnerability, kernel developers
had to revisit the same piece of code, diagnose the root cause
again, and craft the 2nd patch in commit c61760e6940d [11] for
remediation.

3 Empirical Analysis and Design Overview

We collected incorrect Linux kernel patches and analyzed
them to understand why patches can mistakenly introduce
new vulnerabilities and why existing testing techniques are
unable to detect them.

3.1 Incorrect Patch Collection
We took the following steps to collect a set of incorrect patches
for empirical study. First of all, we crawled the upstream
Linux kernel reports [24] to get all commits with the “Fixes”
tag from 2012 to 2022. Recall that, the “Fixes” tag in a commit
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indicates that the purpose of this commit is to patch a bug in
the kernel. To filter out incorrect patches from these commits,
we tried to construct fixing relationships. More specifically,
we traversed from the newest commit c0 in this set through a
depth-first search. If the commit c1 referred to by the “Fixes”
tag in c0 is also a patching commit, we built a fixing relation-
ship between them c0 → c1 and continue the traversing from
c1. We repeated this process until all commits are examined.
Finally, we got 4,534 chains representing fixing relationships.
There are 8 longest chains built in this approach, containing
6 commits across the span of 1,115 days at most. In other
words, it took 1,115 days and 5 patches for kernel developers
to fix the initial bug. All commits in a chain, other than the
head and the tail, are fixing the previous commit and in the
meanwhile fixed by the next commit. Therefore, these com-
mits are incorrect patches we are searching for. In total, we
found 3,706 incorrect patches.

Considering the huge amount of incorrect patches, we sam-
pled 182 (5%) from them for manual analysis. We only sam-
pled the reports generated by Syzkaller so that we can estimate
their security impacts and reproduce them using the essential
information in Syzkaller’s reports.

We contend that these 182 samples serve as representative
examples for the following reasons. First, the sample size
surpasses that of previous empirical studies focused on kernel
patches (e.g., [40, 42, 45–47, 57]), which typically featured
between 10 to 90 test cases. In comparison, our dataset con-
sists of a significantly larger sample size, providing a more
comprehensive perspective.

Second, these 182 samples encompass a broad spectrum
of vulnerability types. Among them, 53 cases involve use-
after-free vulnerabilities, 11 pertain to out-of-bound issues,
38 relate to general protection faults, 20 involve concurrency
problems, 16 concern memory leaks, and 9 involve unini-
tialized variables. Additionally, there are 35 cases classified
under various other vulnerability types. This diverse range of
vulnerabilities ensures that our dataset captures a wide array
of kernel security issues.

To understand why these 182 patches are incorrect, we built
a team of three security analysts. All team members have rich
experience in kernel patching and vulnerability exploitation.
Each incorrect patch was randomly assigned to two analysts,
and conclusions were drawn only when their analysis results
converged. It took the whole team about 1,080 man-hours to
finish. On average, each commit requires nearly 6 hours to
conclude.

3.2 Key Observations

Through the analysis, we gain two key observations which
not only explain why existing techniques are incapable of
detecting incorrect patches but also enlighten the design of
KLAUS.

int a = 10;
int b = 5;
int c = 20;
int d = 10;

if (a == 10 && c == 15   )

vuln_1();

d == 15

d = a + b;

vuln_2(); vuln_3();

if (a == 10 && c == 15   )c == 5

c = a - b;

True False

True False

control flow
data flow

Y

X

Figure 1: A synthetic program to explain how AWRPs intro-
duced incorrect patches finally result in new vulnerability.

Observation 1: Old and new vulnerabilities share similar
contexts. Intuitively, the incorrect patch fixes the old vulner-
ability and, at the same time, introduces a new vulnerability.
Therefore, the kernel codes pertaining to the new vulnerability
have a large overlap with those pertaining to the old vulnera-
bility, which means the contexts are similar. In our working
example, to trigger the memory leak, a nfc_llcp_sock socket
must be created and bound to the NFC device. To misbalance
the refcount, llcp_sock->ssap must be equal to LLCP_SAP_MAX.
These conditions are also needed to trigger the double-free
vulnerability introduced by the incorrect patch.

This observation hints that to construct a PoC program (i.e.,
an input) to trigger the new vulnerability, we can reuse the
context provided by the PoC program for the old vulnerability
to save time. From this perspective, it seems regression testing
is an ideal solution for incorrect patch detection because it
replays the PoC program and thus the same context. The same
context can reproduce the old vulnerability but to trigger the
new vulnerability, the context must be varied. In our working
example, on the basis of one nfc_llcp_sock socket used to
trigger memory leak, binding a second nfc_llcp_sock socket
to the NFC device is critical to manifest the double free.

Therefore, an efficient strategy to explore the huge code-
base of the kernel and trigger the new vulnerability is to stick
the kernel execution to the old context and in the meanwhile
vary it subtly. To this end, an instinctive solution is to per-
form direct fuzzing towards code changes introduced by the
patch (e.g., [55, 58]). Since the changes are close to the vul-
nerable code, fuzzing towards them is likely to preserve the
context. By covering the changes introduced by the patch, the
context is varied to accommodate to the new vulnerability.
However, this intuitive design can hardly work in practice.
Again looking at our working example, we can note that the
patch does not modify nfc_llcp_sock_free function. A naive
directed fuzzing will not set this function as the target and
make attempts to reach it. As a consequence, no matter how
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many times the added nfc_llcp_local_put function is executed,
the expected double free will never be triggered.

Designing a smarter directed fuzzing to trigger the new
vulnerability resulting from the incorrect patch, we, therefore,
need more in-depth guidance rather than merely based on code
changes. A recent work PatchVerif [42] proposes a method for
patch applied to robotic vehicles. It executes the code before
and after modification and then monitors the variation of the
vehicle’s speed, location, and altitude etc. If the variation
is significant, PatchVerif concludes that the corresponding
code change might be faulty. While this method demonstrates
effectiveness in patch assessment, it is designed specifically
for robotic vehicles. As a result, it is not able to be applied to
our problem.

Observation 2: New vulnerability results from Altered
Write-Read Pairs (AWRP). The old vulnerability is fixed
because the code changes introduced by the patch make mod-
ifications to the data flow and control flow of the kernel. Due
to these changes, the triggering condition of the old vulnera-
bility can no longer be satisfied. In our working example, the
patch decreases the refcount by inserting nfc_llcp_local_put

before returning from function llcp_sock_bind. This new write
operation of the refcount rebalances the refcount and prevents
memory leak. However, from a broader perspective, this new
write operation in nfc_llcp_local_put is unintentionally as-
sociated with the read of the refcount in nfc_llcp_sock_free

function, which causes an unexpected double free.
Through empirical study, we discovered that it is not an

coincidence that the new vulnerability is caused by a write-
read pair like the one in our working example. Further, the
root cause of all incorrect patches can be attributed to the
occurrence of Altered Write-Read Pairs regarding the same
variable (AWRP for short). Generally, we consider a pair of
write-read operations of the same variable is an AWRP if one
of the following situations happens. ❶ A new write or read
operation is added by the patch. This new operation can be
matched with existing read or write operations to form a new
pair. ❷ An existing write or read is removed by the patch.
As a result, an existing pair is eliminated. ❸ The writing
value or the reading behavior is changed. In other words,
either the interesting variable is assigned with a different
value or the interesting variable is used in a different way.
This situation can be deemed as a combination of the first and
second situations: removing an old write/read and adding a
new write/read. ❹ The path condition to execute the write or
the read operation in an existing pair is changed.

In Figure 1, we use a synthetic example to illustrate when
a patch is applied, how AWRPs affect the data flow and the
control flow, finally resulting in new vulnerabilities in the
kernel. There are two distinct write-read pairs in Figure 1: d
= a + b matches with d == 15 with regard to variable d in pair
X and c = a - b matches with c == 5 with regard to variable
c in pair Y. Now we consider three possible patches that

Algorithm 1: WorkList-Based Abstract Interpretation
1 Input: Function F and its CFG with e as the entry node ;
2 Output: S[];
3 Initialize: waitList = {e},S = {e →⊤,∀n ̸= e →⊥} ;
4 while ∃ n ∈ waitList do
5 waitList = waitList −{n} ;
6 s′ = Trans f er(S[n],n);
7 foreach n’ ∈ Successors(CFG, n) do
8 if s’ ⊈ S[n’] then
9 S[n′] = S[n′]∪ s′;

10 waitList = waitList ∪{n′};

can be applied individually. In our first synthetic patch, we
assume that d = a + b is newly added and all others exist in the
original kernel. According to situation ❶ mentioned above,
pair X is an AWRP because d = a + b is a new write operation
of variable d. With this new write, the condition in the first
if statement (i.e., if(a == 10 && d == 15)) will be evaluated
to True. Then the kernel will take the branch and triggers the
vulnerability vuln_1. In our second synthetic patch, we assume
that d = a + b is removed and all others remain unchanged
in the kernel. According to situation ❷, pair X is an AWRP
because d = a + b is a deleted write operation of the variable d.
As a result, the code in the false branch of the first if statement
is activated. It is no longer a piece of dead code. According
to situation ❹, now pair Y is also an AWRP. After executing
c = a - b, the kernel will evaluate the second if statement
to be True and takes the branch to trigger the vulnerability
vuln_2. In our third patch, d = a + b is removed and c = a - b

is changed to c = a + b. According to ❸, pair Y is an AWRP.
The condition in the second if statement will be evaluated to
False which leads to the triggering of vulnerability vuln_3.

The AWRP methodology provides a way to analyze the
impacts of patches on data and control flow. Our findings
show that incorrect patching results from mistakenly altering
write-read pairs. Additionally, we have observed that incorrect
patches may trigger kernel errors when the AWRP-related
code is executed.

3.3 Design of KLAUS
Based on the key observations discussed above, we present
the design of KLAUS which aims to generate concrete input
to execute kernel code related to patch and thus demonstrate
kernel errors if the patch is incorrectly developed or deployed.

The key idea of KLAUS is to leverage AWRP as the indicator
to efficiently search the huge codebase of the Linux kernel.
Through executing the write operation first and then the read
operation in an AWRP, KLAUS generates the desired input
sequence. Following this idea, the first component of KLAUS
utilizes static analysis techniques to identify AWRPs caused
by the patch. The static analysis component starts by profiling
the influence of AWRPs through abstract interpretation. By
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collecting instructions the abstract states of which are changed
because of the patch, KLAUS constructs AWRPs by pairing
write instructions and read instructions that are pertaining to
the same variable.

With the set of AWRPs as the guidance, the second com-
ponent of KLAUS performs directed fuzzing. As mentioned
above, vulnerabilities related to incorrect patches can be trig-
gered by executing AWRPs. Inspired by this, our directed
fuzzing first makes attempts to reach the write operation and
then switches to reach the read operation belonging to the
same pair. As we will elaborate in Section 5, KLAUS uses both
AWRP-related code and type coverage as the feedback for
exploration. Considering that write and read operations can
be dominated by branches that are hard to trigger because of
complex conditions, KLAUS explores symbolic tracing and an
instrumentation-based mechanism to bypass these branches
in an efficient fashion. In Section 5.3, we will elaborate on
more design details. It should be noted that considering the
complexity of the Linux kernel and the limitation of con-
straint solvers, we do not use symbolic execution to explore
the kernel and thus execute AWRPs. Instead, we leverage
more efficient directed fuzzing solutions. Furthermore, it is
important to emphasize that our system, KLAUS, is specifically
designed to address memory errors within the Linux kernel.
As such, it is not intended or optimized for handling logic
errors that may arise in the kernel.

4 AWRP Identification

As is mentioned above, the first component of KLAUS is to
identify AWRPs introduced by a patch. Here, we introduce
how to achieve it by using abstract interpretation. In the fol-
lowing, we first introduce abstract interpretation at a high
level. Then, we present our definitions of abstract state, trans-
fer function, and joint operator with regard to AWRP. Finally,
we discuss our algorithm to identify AWRPs on the basis of
abstract interpretation analysis.

4.1 Abstract Interpretation

Abstract interpretation is a static analysis framework that
considers all paths and inputs to obtain a sound over-
approximation of the state at every program location [38, 50].
For the sake of efficiency, the state is abstract and often repre-
sented by a set of constraints in a certain abstract domain. For
example, in an interval domain employed in a value-set analy-
sis, each constraint could be in the form of lb ≤ x ≤ ub, where
x is a variable and lb,ub are the lower and upper bounds. The
joint of two states, s1 = lb1 ≤ x ≤ ub1 and s2 = lb2 ≤ x ≤ ub2
is notated as s1 ⊔ s2 = min(lb1, lb2) ≤ x ≤ max(ub1,ub2).
The ⊔ denotes the join operator which returns an over-
approximation of the set union. The goal of using an abstract
domain to represent states is to reduce the computational over-

head. Therefore, abstract interpretation is especially useful
for the analysis of large-scale programs like OS kernel.

Computing on the control flow graph (CFG) of the program,
we can reach a fixed-point of states. Without losing generality,
in KLAUS, we assume the CFG has a unique entry code and
a unique exit code. The nodes in CFG are associated with
instructions (LLVM IR instructions in our implementation)
and edges represent control flows. Algorithm 1 presents a
generic worklist-based algorithm to compute the fixed-point.
Every node n in the CFG has an abstract state S[n] which is a
sound over-approximation of all possible states at n. Initially,
S[n] is ⊥ (empty) for all CFG nodes except the entry node
which is ⊤ (tautology). The transfer function in computation
takes as an instruction inst and its state s an input, and re-
turns a new state s′ which is the result of executing inst in
state s. To ensure that analysis converges, when the program
has a loop or is non-terminating, a widening operator ∇ is
needed in addition to join operator (⊔). Due to the space limit,
we omit details of the widening operator. A more complete
introduction can be found in [38, 50].

4.2 The Abstract State

In KLAUS, we assume the kernel has a set of variables V =
{v1, · · · ,vn}. Each variable v ∈V is mapped to type(v) which
is a set of annotated types. We use type(v) to construct
AWRPs: a write operation and a read operation are paired if
the two pertaining variables share the same type(v). More
details will be discussed in Section 6. Depending on where
the variables are stored, type(v) is defined differently.

For local variables the life cycle of which starts at the func-
tion prologue and ends at the function epilogue, type(v) =
{’func+x’} where ’func’ is the function name and ’x’ is the
offset of the local variable on the stack frame from the return
address. For global or static variables which are valid since
kernel bootup and across system calls, we directly use their
variable name to denote type(v). That is to say, for the vari-
able like static struct proto llcp_sock_proto, its type(v) is
llcp_sock_proto rather than struct proto. For variables stored
on the kernel heap (e.g., SLAB/SLUB region and vmalloc
region), we further divided them into three situations. If the
variable is an individual object in a structure or union type,
we denote it using the type name. If the variable is a structure
or union field, we denote its type(v) as ’type+x’ where ’type’

is the type name and ’x’ is the field offset. If the variable is an
ordinary buffer, its type(v) is denoted as ’char*’. In our work-
ing example, KLAUS denotes the type(v) of llcp_sock->local’s
refcount as nfc_llcp_local+0x18 because the type of llcp_sock

->local is nfc_llcp_local and the offset of the refcount is 0x18.
Further, each variable v ∈V has its value, denoted value(v),

which is a set of ⟨cond,content⟩ tuples. This tuple indicates
that under the condition cond, the value of v is equal to
content. Both cond and content are represented as symbolic
strings and KLAUS does not seek to evaluate it using SAT/SMT
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solvers. In our working example, after the kernel executes
line 22, the value(v) set of llcp_sock->sock is {⟨ ’llcp_sock

->ssap == LLCP_SAP_MAX’, ’NULL’ ⟩}. For readability, here, we
use variable names from the source code. In our implementa-
tion, variable names are in SSA (Single Static Assignment)
form.

Applying the above definitions, the abstract state S
for our analysis over kernel functions is defined as
S = {cond,⟨type(v1),value(v1)⟩, · · · ,⟨type(vn),value(vn)⟩}
where cond is the path condition accumulated so far from the
entry node.

4.3 The Transfer Function and Join Operator
To model the impact of executing inst in the state S,
we let the transfer function be Trans f er(S, inst). The
new state returns by the transfer function is S′ =
{cond′,⟨type′(v1),value′(v1)⟩, · · · ,⟨type′(vn),value′(vn)⟩}.

If inst writes to a variable v, we update value(v) by re-
moving all tuples and adding a new tuple ⟨cond,content⟩
where cond is the path condition in S and content is the
writing value. If inst casts variable v from one type to an-
other type, we update type(v) by appending the new type.
For any other variables w ∈V that are not written or casted,
value(w) = value′(w) and type(w) = type′(w). If inst is a
conditional jump, cond in S is conjuncted with the jump con-
dition to produce cond′. For the instruction inst that neither
writes or casts a variable nor performs a conditional jump,
S′ = S.

We define the Trans f er for a sequence of instruc-
tions insts = {inst0, inst1, · · · , instn} as Trans f er(S, inst) =
Trans f er(· · ·(Trans f er(S, inst0), inst1), · · · , instn).

To avoid an exponential increase in state number, states
computed along two paths are joined when the control flow
merges. For cond in the state, our join operator updates it
through disjunction (cond ∪ cond′). In this way, we can pro-
file the patch condition change introduced by the patch (sit-
uation ❹ for AWRPs in Section 3.2). Similarly, to capture
how variables are affected by the patch and thus construct
AWRPs, for each variable v ∈V , our join operator computes
its type(v) and value(v) by combining the sets from two states
respectively.

Formally, given two states S =
{cond,⟨type(v1),value(v1)⟩, · · · ,⟨type(vn),value(vn)⟩} and
S′= {cond′,⟨type′(v1),value′(v1)⟩, · · · ,⟨type′(vn),value′(vn)⟩},
we define S′′ = S′ ∪ S as {cond ∪ cond′,⟨type(v1) ∪
type′(v1),value(v1) ∪ value′(v1)⟩, · · · ,⟨type(vn) ∪
type′(vn),value(vn)∪ value′(vn)⟩}.

4.4 Identification Algorithm
At a high level, the identification algorithm applies the ab-
stract state, transfer function, and the join operator described
above to abstract-interpret the kernel functions before and

Algorithm 2: Sketch of AWRPs Identifcation

1 Input: Kernel K and Patch P ;
2 Output: Pair[] ;
3 f uncWL = GetPatchedFunc(K, P) ;
4 I = {}, Pair = {} ;
5 while ∃ <F, F’> ∈ funcWL do
6 f uncWL = f uncWL - {<F , F ′>} ;
7 S = AbstractInterpret(F) ;
8 S′ = AbstractInterpret(F ′) ;
9 foreach n ∈ F ′ do

10 if n /∈ F or S[n] ̸= S’[n] then
11 I = I ∪ {n} ;

12 if IsCall(n) then
13 if ∃ arg, value(arg) ̸= value’(arg) then
14 f uncWL = f uncWL ∪ Callee(n) ;

15 if IsRet(n) then
16 if value(ret) ̸= value’(ret) then
17 f uncWL = f uncWL ∪ Caller(n) ;

18 foreach n ∈ I do
19 if IsWrite(n) then
20 m = FindRead(type(n), K) ;
21 Pair = Pair ∪ <n, m> ;

after patching. By using the differences in analysis results,
we identify instructions the state of which are changed by
the patch and pair write operation with read operation to con-
struct AWRPs. Algorithm 2 is the sketch of our identification
algorithm. In the following, we elaborate on more details.
Intra-procedural analysis. Given a kernel and a patch com-
mit, KLAUS can easily find patched functions by parsing the
diff file in the commit (line 3 in Algorithm 2). In our working
example, the patched function is llcp_sock_connect according
to line 8 in List 1. Our identification starts by applying Al-
gorithm 1 to abstract-interpret these patched functions. More
specifically, KLAUS analyzes these functions to get S and S′

- abstract states before and after patching respectively (line
7-8). For every instruction n in the patched function F , it is
an altered instruction if it is newly added in the patch (i.e.,
n /∈ F) or its state changes (i.e., S[n] ̸= S′[n]). We deem two
states are different as long as the type(v) or value(v) of any
one variable v has changed. Note that we do not consider
instructions that are deleted by the patch. On the one hand,
it is because the triggering of the new vulnerability needs
not execute the deleted instruction. On the other hand, it is
because the impact of deleting instructions can be modeled
by abstract interpretation and is reflected in the type(v) or
value(v) of influenced variables. Finally, we add instructions
with altered states to the I set for AWRP construction (line
10-11).
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Inter-procedural analysis. The state changes introduced to
the patched functions will make impacts on other functions.
For a variable v which is passed as an argument to a callee
function, if its value(v) changes, all computations in the callee
function that depend on this argument will propagate the
changes. Similarly, if a function returns a different value(v)
to the caller, the computations that use the returned value
will change states as well. Therefore, we perform an inter-
procedural analysis to further identify these changes. In our
algorithm, we use a worklist to maintain functions worth
analysis. In line 14 and 17 , we add affected callee and caller
functions to the work list until finally, the analysis reaches a
fixed-point (line 5).
AWRPs construction. Abstract Interpretation profiles the
impact of the patch. Through the above analysis, we obtain a
set of instructions I the states of which are altered. According
to our discussion in Section 3.2, new vulnerabilities result
from AWRPs. Therefore, we construct AWRPs from the in-
struction set I. Recall that the write and read operations in
one AWRP pertain to the same variable. Here, we continue to
over-approximate the construction. Instead of using memory
alias analysis to determine whether two operations belong
to the same variable, we examine whether the type(v) of the
written variable v and the type(w) of the read variable w have
an overlap. If they share a common annotated type, we will
pair these two operations. As shown in line 20-21, for any
write instruction in the set I, we will search the whole ker-
nel to find a read instruction that satisfies our criteria. In our
working example, the type of the variable llcp_sock->local

->ref in function llcp_sock_bind is nfc_llcp_local+0x18 which
is also the type of the variable sock->local->ref in function
nfc_llcp_sock_free. So, we pair the write operation of the for-
mer with the read operation for the latter, and thus construct
an AWRP for our output.

5 AWRP-Driven Fuzzing

With the identified AWRPs in hand, as mentioned in Sec-
tion 3.3, the second component of KLAUS is designed to per-
form directed fuzzing. Recall that AWRPs are used to describe
the change of control and data flow introduced by a kernel
patch. If the patch is problematic, by executing the code rele-
vant to AWRPs, a kernel error could be potentially manifested.
In this section, we discuss how KLAUS leverages AWRPs as
guidance to search for input that could execute the kernel code
pertaining to AWRPs and thus unveil the incorrectness of the
corresponding kernel patch.

5.1 Two-Dimension Coverage

Before describing the coverage metrics in KLAUS, we need to
clarify that AWRP is a necessary but insufficient condition for
the new vulnerability. The AWRPs introduced by the patch are

intended to fix the old vulnerability. There might not be a new
vulnerability. Even if the new vulnerability exists, executing
an AWRP does not guarantee the triggering of it unless the
variable is assigned with the problematic value (e.g., a large
index to trigger the out-of-bound write) following a certain
program path.

Therefore, our fuzzing goal is not only executing identified
AWRPs in the order of write and read but also diversifying
the writing value and execution path so that we can have
more chances to trigger the potential new vulnerability. From
this perspective, directed fuzzing that minimizes the distance
between the target site and explored site is not an optimal
solution for KLAUS. On the one hand, it is because the distance
metric overemphasis reaching the target site and fails to enrich
variable values along the execution paths. On the other hand, it
is because fuzzing that minimizes distance can be easily stuck
in a single path and thus is not generalized to consider paths
that are longer but essential to manifesting new vulnerabilities.

Instead of relying on one dominating metric, KLAUS em-
ploys a two-dimension coverage strategy to execute code
relevant to AWRPs. The first metric is type coverage. Recall
that in AWRP identification, the write operation and the read
operation are paired if their variables have overlapping in the
type() set. Without a doubt, the types in this set are of inter-
est. Favoring inputs that operate kernel objects in these types,
KLAUS sticks itself to code that is related to AWRPs so that it
does not diverge in the huge kernel codebase. Compared with
distance metric, type metric focuses the fuzzing on executing
code related to AWRPs and meanwhile allows path explo-
ration. The second metric in KLAUS is code coverage which is
commonly used in traditional fuzzing. We do not discard this
metric because the new code creates new values that can be
assigned to the variables pertaining to AWRPs. With different
values, especially extreme values such as a too-large index for
buffer access, repeatedly executing write and read operations,
KLAUS can ultimately trigger the potential new vulnerability.

5.2 Seed Selection

During the course of fuzzing, KLAUS maintains a matrix to
filter out interesting seeds. In the matrix, each row represents
an identified AWRP. Considering that there will be multiple
variable instances that are corresponding to one write oper-
ation, in the column, KLAUS stores the pair of the variable
address and the writing value.

When an interesting write operation is executed, we com-
pare the address and the value with those already in the matrix.
We will add one more pair to the matrix if either the address is
new or the value is new. When an interesting read operation is
executed, KLAUS examines whether the variable address and
the read value exist in the matrix. If not, we will skip this
time because to count an AWRP, the writing operation must
be executed first.
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With this matrix, we assign the highest priority to the input
that either executes the interesting write operation with a new
writing value or executes the interesting read operation after
the corresponding write is executed. Any other inputs that
increase type coverage or code coverage are also selected
for the following round of fuzzing but not with the highest
priority.

5.3 Resolving Branch Condition

The design of two-dimension coverage and seed selection
keeps the fuzzing on an efficient way of discovering the new
vulnerability. However, it does not guarantee that the fuzzing
will not be hindered by branch conditions that are hard to
satisfy.

Prior works mainly use two approaches to resolve this prob-
lem. The first approach is to do symbolic tracing from the
system call entry and kick in SAT/SMT solvers to solve the ac-
cumulated constraints [43, 44, 63]. The second approach is to
instrument the branch and implement a feedback mechanism
to favor seeds that bring changes to the variables involved in
the branch conditions [32, 36, 48]. However, for large-scale
programs like kernel, as we will show in Section 7.3, both
approaches have their limitations.

For symbolic tracing, though the size and complexity of
its constraints are largely reduced compared with symbolic
execution, it can go beyond the solvers’ capacity from time to
time. The major reason is the long calling chain in the kernel.
For example, as the kernel is implemented layer by layer
when a function in the abstract layer (e.g., virtual file system)
is called, the kernel will execute a series of functions until
reaching a low-level layer (e.g., USB device driver). It will
take a very long time for the solver to satisfy the constraints
collected in this procedure. In the worst case, the solver might
fail to solve the constraints after wasting too much time.

Regarding the instrumentation-feedback mechanism, its
main limitation is that it suffers from satisfying complex con-
ditions. It is possible that our targeted write or read operation
resides in a likely-taken branch. So its complex conditions
can be easily satisfied with the feedback from instrumentation.
However, when it is in a rare branch, the condition can be hard
to satisfy. To this end, we experiment with both approaches
in KLAUS and thus determine which branch-solving method
is more suitable to our problem. We show the evaluation of
both methods in Section 7.

6 Implementation

Below, we delve into the specifics of our implementation,
which is open sourced on Github [33].

6.1 Abstract Interpretation

In Section 4, we explain the abstract interpretation at the
source code level. The implementation using LLVM brings
about certain challenges, which we address below.

First, our AWRP identification process begins with func-
tions that have been altered by the patch. These functions can
easily be obtained from the commit. However, when repre-
sented at the LLVM IR level, they may have been inlined into
their caller functions. To ensure that these caller functions are
also considered in our implementation, we utilize llvm-diff

to identify the patched functions at the LLVM IR level.
Second, KLAUS computes the type() of variables based on

the memory region where they are stored. Global variables are
easy to identify as their names are unique and present in the
LLVM IR. To determine the type() of local variables stored
on the stack, KLAUS relies on debugging information to obtain
the function names and offsets, which are then combined into
the format ’func+x’. For variables stored in the heap, KLAUS
determines the parent structure’s type and the variable’s offset
within the structure using the Getelementptr instruction. This
instruction is responsible for getting a field element from a
structure using a pointer. Therefore, it has an operand referring
to the parent structure and an operand indicating the offset
of the field. At the source code level, each variable has its
own memory region, making it possible to compute its type()
using the above approach. However, in the LLVM IR, some
variables are temporary and only exist for the SSA form.
In our implementation, we address temporary variables by
initially assuming their type() is blank and later computing
it as the union of the type() of all operands in the instruction
that defines the temporary variable.

Third, KLAUS faces a challenge as the LLVM IRs gener-
ated from the unpatched and patched kernels are not identical.
For example, a variable in the same function may have the
label %var1 in the IR of the unpatched kernel and %var2 in
the IR of the patched kernel. To accurately identify AWRPs,
KLAUS needs to know if the type() and value() of a variable
have changed due to the patch. To overcome this, KLAUS
maps variables in both LLVM IRs back to their source code
level representation using debugging information. This way,
KLAUS can compare variables’ type() and value() and deter-
mine if their corresponding write or read operations should
be added to the AWRP set. It is worth noting that in cer-
tain situations, static variables across different modules may
share the same name, leading to potential name collisions
(e.g., nr_threads are defined as a static variable in both kernel

/fork.c and tools/tracing/latency/latency-collector.c files).
To avoid this from impacting the accuracy of our analysis,
we automatically annotated each static variable with module
names for differentiation.

Finally, in our implementation, our AWRP identification
process first performs an intra-procedural analysis before it
spreads the effects of the patch across functions. To handle the
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Call instruction, we treat it as a Store operation and consider
the called function as a variable. The value() of this pseudo-
variable changes if the called function returns a different
value(). This change is then propagated in an iterative manner,
with a list of waiting functions being kept track of, until the
type() and value() of all variables reach a fixed point.

6.2 AWRP-Driven Fuzzing

Recall that KLAUS experiments two branch-resolving mech-
anisms to resolve branch conditions – ❶ symbolic tracing,
which traces the system call entry symbolically and utilizes
an SAT/SMT solver to generate the necessary inputs, and ❷
branch instrumentation, that selects and alters the input seed
based on how critical variables are affected.

For symbolic tracing, our implementation follows the
method described in HFL [43]. It forks a process specifi-
cally for constraint collection and resolution when a branch
is touched but has not been entered too many times. For the
instrumentation-based mechanism, our implementation instru-
ments critical variables in the kernel during compilation so
that the fuzzer can track changes to these variables when the
instrumented sites are executed.

In our implementation, two types of variables are treated
as critical variables: those directly used in the branch condi-
tions, and those that have a data flow towards the first type of
variables. The latter is included in our feedback mechanism
because they have the potential to affect the value of the first
type of variables. After capturing changes to the critical vari-
ables, our implementation forces the system to revisit how the
input was mutated from the previous seed. This allows the
system to examine whether the change of the critical variable
stems from the mutation of a specific system call argument. If
so, this implies an implicit dependence between the argument
and the critical variable, and our implementation forks a pro-
cess to focus on mutating this specific argument to accelerate
branch taking.

After KLAUS triggers a kernel error during its directed
fuzzing process, it is possible that the error is not caused by
the kernel patch under examination. To address this, KLAUS’s
implementation also includes a triaging component to deter-
mine the root cause of the error. If the same error occurs in
the unpatched kernel when the patch is removed and the input
is replayed, the input is discarded and treated as not being rel-
evant to the patch. If the error does not occur in the unpatched
kernel, we conclude the patch is incorrect. If the error occurs
but is different from the error prior to the patch removal, a
manual validation procedure is performed to confirm the rel-
evance of the error to the patch. More information on the
manual validation process can be found in the Appendix.

7 Evaluation

In this section, we first discuss how we construct a ground
truth dataset. Then, we describe how to use that dataset to
evaluate the effectiveness and efficiency of KLAUS compre-
hensively and thoroughly. Lastly, we demonstrate the utility
of KLAUS on more Linux kernel patches (the correctness of
which is unknown).

7.1 Dataset

Evaluating KLAUS requires a dataset of incorrect Linux kernel
patches. Although 3,000+ incorrect patches were gathered
and 5% of them were manually analyzed, using them as the
ground truth dataset is not feasible. The tool was developed
on GCC 9.0 and LLVM 12, limiting the compatibility with
some old-version kernels and restricting the available incor-
rect patches 1. Also, KLAUS requires the PoC program that
triggers the original kernel bug, which was not available for
some patches. Thus, only 23 patches could be used as the
ground truth dataset. To overcome this shortage, 250 recently
released patches were randomly selected for testing. These
patches were compatible with the implementation and had
available PoC programs for triggering the original bugs. If
KLAUS could detect incorrectness in these patches, it would
demonstrate the critical utility of the proposed technique.

7.2 Experiment Setup

Using the ground truth dataset described above, we compared
the effectiveness of KLAUS with that of the most commonly
used Linux kernel fuzzing tool – Syzkaller [53]. Besides, we
evaluate how the two different branch-resolving mechanisms
– instrumentation-based and symbolic tracing-driven solutions
– benefit incorrect patch identification. Following this effort,
we also study how the two AWRP-based coverage mecha-
nisms each individually contribute to KLAUS’s effectiveness
in pinpointing incorrect kernel patches.

For all of our experiments, we ran Ubuntu 20.04 LTS on a
machine with an AMD EPYC 7702 64-Core CPU and 384GB
RAM. We enabled KASAN as a sanitizer for error detection.
For each virtual machine used by our fuzzer, we allocated
2 virtual CPU cores and 2GB of RAM and ran the fuzzer
for 5 rounds with each round for 3 days We collected the
results from the fuzzer logs and other files in the fuzzer’s
work directory. If nothing interesting is found in all rounds, we
mark the result as N/A. Otherwise, we calculate the average
time by treating N/A in some rounds as the maximum time.
To ensure fairness, we give all fuzzers the same initial seed.
Our initial seed was derived from the PoC that triggers the
original bug.

1Note that this is only a limitation of the implementation, our methodology
is generic.
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Case ID KLAUS B.I. Syzkaller KLAUS N.R. KLAUS S.T. KLAUS B.I.(co) KLAUS B.I.(to) Over-approx.
730c5fd42c1e [20] 6m 18m 37m 9m 240m < 1m 0.08
7f700334be9a [6] < 1m < 1m < 1m < 1m < 1m < 1m 0.50
8f5c5fcf3533 [26] 2m N/A 1m < 1m 2m N/A 0.50
951c6db954a1 [22] 180m 480m 25m 955m 360m N/A 0.00
95fa145479fb [4] 1080m N/A 1902m 2989m N/A N/A 0.12
9ebeddef58c4 [21] 44m 1680m 60m 119m 60m N/A 0.00
b196d88aba8a [27] < 1m < 1m < 1m < 1m < 1m < 1m 0.00
c3e2219216c9 [2] < 1m 4260m 4m 1535m N/A 9m 0.50
d10523d0b3d7 [17] 4m 3960m 8m 7m 4m 9m 0.00
e5e1a4bc916d [31] < 1m < 1m < 1m < 1m < 1m < 1m 0.00
e9db4ef6bf4c [3] 720m N/A N/A 51m N/A N/A 0.00
009bb421b6ce [29] < 1m N/A < 1m < 1m < 1m N/A 0.75
0fedc63fadf0 [13] 2665m N/A N/A N/A 3518m 3800m 0.72
100f6d8e0990 [9] < 1m 1m < 1m < 1m < 1m < 1m 0.70
1548bc4e0512 [30] 451m N/A 199m N/A 1m 3488m 0.12
301428ea3708 [16] < 1m < 1m < 1m < 1m < 1m < 1m 0.00
304e024216a8 [12] 21m N/A 3m 1m < 1m 62m 0.50
44d4775ca518 [14] 1835m N/A N/A 4212m N/A N/A 0.00
6289a98f0817 [23] < 1m < 1m < 1m < 1m < 1m < 1m 0.00
6a21dfc0d0db [19] 3m 1200m 1m 62m 5m N/A 0.00
6d6dd528d5af [15] 592m N/A 54m 86m 2904m 1141m 0.60
7a68d9fb8510 [28] 4116m N/A 657m 3474m N/A 658m 0.00
c47cc304990a [10] 24m 20m 17m 3m 6m 7m 0.06

total # 23 13 20 21 18 15 N/A

Table 1: The performance of KLAUS. Note that the case ID represents the commit ID of the incorrect patch. The number in the table indicates
the time spent for a corresponding fuzzing method to pinpoint an incorrect patch in minutes. “N/A” denotes the fuzzing method fails to find
the patch’s incorrectness within 3 days. The last row of the table shows the total number of incorrect patches that the corresponding fuzzing
method unveils in a 3-day period. KLAUS B.I. and KLAUS S.T. mean our fuzzer that utilizes Branch Instrumentation and Symbolic Tracing to
resolve branch conditions, respectively. KLAUS N.R. means that no branch condition resolving technique is used. KLAUS B.I.(to – type only),
KLAUS B.I.(co – code only) represent two different coverage guidance implementations – KLAUS B.I.(type only): KLAUS B.I. that uses only the
type information pertaining to AWRP to guide the fuzzing process; KLAUS B.I.(code only): KLAUS B.I. that employs only the code relevant to
AWRP for fuzzing guidance. Over-approx. represents the rate of the read-write pairs that KLAUS mistakenly identifies.

7.3 Performance in Ground Truth Dataset

Recall that KLAUS employs abstract interpretation to identify
altered read-write pairs. However, the implementation of ab-
stract interpretation tends to over-approximate the read-write
pairs that could potentially be relevant to a patch. To assess the
extent of this over-approximation, our evaluation measures
the accuracy of the identified read-write pairs by comparing
them with the true pairs relevant to a patched code fragment.
Any identified pairs that are unrelated to the patched code
fragment are considered false positives.

In Table 1, the last column illustrates the false positive rate
of AWRP. The results demonstrate that among the 23 cases
analyzed, 11 cases have no false positives, and the majority
of cases exhibit a false positive rate below 0.5. This indicates
that the impact of over-approximation on our fuzzing results
is minimal, although it may slightly reduce the efficiency of
our fuzzing process.

In addition to the evaluation of our static analysis technique
used in KLAUS, we also evaluate the dynamic component of
KLAUS. Our fuzzing method recorded the time spent on each
test case where an error was triggered by an incorrect patch.
As seen in Table 1, our approach outperforms the traditional
kernel fuzzing tool, Syzkaller. By using symbolic tracing
and branch instrumentation, respectively, KLAUS accurately
identified incorrectness in 21 and 23 kernel patches, while
Syzkaller only found 13. The reason for this improvement
is shown in Figure 2 (see Appendix B). Incorrect patches
are often caused by AWRP, and our method showed higher
coverage of AWRP, leading to a greater ability to detect patch
errors.

As is described in Section 5.3, we experiment with two
methods to solve branch conditions – symbolic tracing and
branch instrumentation. Table 1 shows the performance of
KLAUS when integrating the corresponding approach. As we
can observe, KLAUS with the integration of branch instrumenta-
tion slightly outperforms that with symbolic tracing in terms
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1 void bpf_tcp_close(struct sock *sk) {
2 -- write_lock_bh(&sk->sk_callback_lock);
3 smap_release_sock(psock, sk); // free psock
4 -- write_unlock_bh(&sk->sk_callback_lock);
5 }
6
7 int sock_map_ctx_update_elem(){
8 -- write_lock_bh(&osock->sk_callback_lock);
9 smap_list_map_remove(opsock);

10 smap_release_sock(opsock, osock);
11 -- write_unlock_bh(&osock->sk_callback_lock);
12 }
13
14 void smap_list_map_remove(struct smap_psock *psock

)
15 {
16 ++ spin_lock_bh(&psock->maps_lock);
17 }

Listing 3: The snippet of commit e9db4ef6bf4c.

of the ability to pinpoint incorrect patches (23 vs. 21). In
addition, we also observed that, for many test cases, KLAUS
with branch instrumentation spends less time on exposing
the patch incorrectness. The reason is that, when enabling
symbolic tracing, KLAUS needs more resources to perform
constraint solving. While symbolic tracing, to some extent,
helps the fuzzer bypass branch predicts more efficiently, it
also plays the role of a double-edged sword, slowing down
the process by which our fuzzer evaluates inputs. This implies
that the branch-instrumentation method is more suitable for
kernel patch quality assessment.

In addition to the performance that KLAUS exhibits in differ-
ent branch-solving mechanisms, Table 1 also shows KLAUS’s
performance when it was implemented with other proposed
techniques. Recall that, in addition to the two branch-solving
schemes, KLAUS is also integrated with an AWRP-based
two-dimension coverage mechanism to enhance incorrect
patch identification. As is elaborated in Section 5.3, the two-
dimension coverage scheme contains two parts. One is to
utilize the code relevant to AWRP as coverage to guide KLAUS.
The other is to employ the type relevant to AWRP as coverage
to drive our fuzzer. In our experiment, we break down the
impact of each coverage mechanism and show their corre-
sponding performance in Table 1.

As we can observe from the table, when disabling branch
resolving method and enabling both coverage mechanisms
(i.e., utilizing two-dimension coverage alone), KLAUS demon-
strates a slight decrease in tracking down incorrect patches (20
vs. 23). It indicates that the branch-resolving mechanism is
helpful for improving incorrect patch identification. However,
it is not a key driving force for the success of KLAUS.

Looking at the results depicted in the 6th and 7th column
of Table 1, we can discover that by using the code relevant
to AWRP as the coverage guidance alone, KLAUS could ex-
hibit significantly better performance than Syzkaller (18 vs.
13). In contrast, the similar performance gain does not mani-

fest when KLAUS utilizes only the type information pertaining
to AWRP as coverage guidance (15 vs. 13). This indicates
AWRP-code-based coverage is the key driving force for incor-
rect patch identification. Besides, the 2nd column implies that
AWRP-type-based coverage could be used as a complemen-
tary component to improve incorrect patch discovery further.

Case Study. To demonstrate that AWRP identification
could benefit incorrect patch detection, we use commit
e9db4ef6bf4c as a case study. In List 3, bpf_tcp_close and
sock_map_ctx_update_elem functions removed the lock oper-
ations over sk_callback_lock. However, this code change
breaks the mutual exclusion between the two functions, re-
sulting in data races on the psock. With this data race, if
smap_list_map_remove is executed after smap_release_sock in
bpf_tcp_close, the psock will be freed in bpf_tcp_close, leading
to a null pointer dereference error in smap_list_map_remove.

In the case above, the AWRP contains the read operation on
the lock in bpf_tcp_close and the write operation on the lock
in sock_map_ctx_update_elem. As such, KLAUS instrumented the
two sites and directed the fuzzing toward them. By focusing
on the two sites, KLAUS increases the likelihood of trigger-
ing the data race, which manifests incorrectness. In compar-
ison, the baseline fuzzers lack this guidance and are easily
distracted from the two sites, missing the opportunity of trig-
gering the data race.

7.4 Performance in the Wild
Recall that the examination of KLAUS’ utility involved run-
ning it against 250 randomly selected kernel patches with
unknown correctness. We discover that KLAUS identified 30
incorrect patches, accounting for 12% of all the patches under
our testing. It is worthy of noting that this percentage is higher
than that reported in our empirical study (about 6% reported
in Section 3.1). We argue that this difference is presumably
because of our sampling bias. The test cases in our evaluation
were randomly selected from recently released patches with
most of them in “holding-area” branches like dev and next.
The code quality of them is typically worse than the upstream
branch which is used in our empirical study.

For the 30 incorrect patches, we promptly reported to the
Linux community. To date, the community has confirmed
and fixed 25 of these patches. We manually evaluated the
bugs introduced by the 30 incorrect patches and found that 3
are exploitable across various Linux distributions, including
Ubuntu and Android. Interestingly, two of the bugs that the
patch intended to fix were not likely to be exploitable, high-
lighting the danger of incorrect patches which can increase
security risks. Due to page limitations, we use only one of the
incorrect patches as an example to showcase the change in
exploitability.

Case Study II. The example in List 4 presents a simplified
code snippet highlighting the vulnerability caused by an incor-
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1 struct sock *sock_clone(struct sock *sk) {
2 struct sock *newsk = inet_csk_clone_lock(sk);
3 ...
4 return newsk;
5 }
6
7 int sys_disconnect(struct sock *sk) {
8 -- free(sk->uaf);
9 -- sk->uaf = NULL;

10 }
11
12 int sys_connect(struct sock *sk) {
13 struct sock *clinet = sock_clone(sk);
14 }
15
16 int sys_close(struct sock *sk) {
17 free(sk->uaf);
18 free(sk);
19 }
20
21 void sk_timer_func(struct sock *sk) {
22 // accessing sk->uaf
23 sk->uaf->a = 1;
24 }

Listing 4: A simplified kernel code fragment illustrating patch
incorrectness.

rect patch. The function sock_clone (line 1) is used to clone a
sock object, which includes a pointer sk->uaf used for creating
a client socket upon new connection establishment (line 13).
The function sys_disconnect is designed to free sk->uaf and
set it to null (lines 8 and 9) when the socket is disconnected.
In the Linux kernel, freeing a null pointer is acceptable and
will not cause any issues.

However, if a timer is set on the socket, the sk_rest_timer

function will be activated, accessing sk->uaf, which may cause
problems if it has already been freed. Imagine a scenario
where the timer function is being executed by the kernel
while the user closes the socket from the user space, trigger-
ing sys_disconnect to free sk->uaf. In such a case, the timer
function will attempt to access the dangling pointer sk->uaf,
resulting in a use-after-free vulnerability.

The resolution of this vulnerability seemed straightforward
initially. Three years ago, kernel developers removed the free-
ing of sk->uaf in sys_disconnect (lines 8 and 9) to eliminate
the race condition, as reflected in the code snippet. However,
upon testing the patch using KLAUS, it was discovered to be
incorrect, and the bug introduced by this patch was even more
susceptible to exploitation.

By delving into KLAUS running against the simple patch
above, we observe that KLAUS first detects the altered vari-
able sk->uaf from deleted lines 8 and 9. Using the type infor-
mation associated with sk->uaf, KLAUS then conducts inter-
procedure analysis and identifies related variables in functions
sock_clone, sys_close, and sk_timer_func. These identified vari-
ables together form the AWRPs, guiding KLAUS’s fuzzing
component to proceed as follows.

First, the fuzzer executes sys_disconnect, causing the altered
write on sk->uaf. The annotated pair then directs the fuzzer to
run the sk_clone function, where the copy of sk->uaf is made.
After the socket is closed, executing sys_close and freeing
sk->uaf’s memory, the leftover socket’s sk->uaf becomes a
dangling pointer. Compared with the dangling pointer intro-
duced by the original kernel bug, the dangling pointer caused
by the incorrect patch is more stably exploitable because it
does not require a critical race to trigger the use-after-free.

8 Related Work

Patch correctness analysis. Prior works have explored vari-
ous methods to evaluate the quality of bug patches. For exam-
ple, Gu et.al.proposed Fixation, a system that uses distance-
bounded weakest precondition to identify partially fixed ex-
ceptions in Java programs [40]. Kim et.al.introduced the con-
cept of bug neighborhood to check for persistence of NULL
pointer references after patch application [45]. Le and Pattison
proposed a new program representation, the multi-version in-
terprocedural control flow graph, which describes control flow
variations between different software versions. By performing
path-sensitive symbolic analysis on the graph, they showed
that their representation could efficiently verify patches [46].

The prior works mentioned are not applicable to our prob-
lem. They were designed to address a specific error (e.g. pin-
pointing exceptions in Java programs [40] or NULL pointer
references [45]), while our goal is to uncover incorrect patches
for various memory corruption errors. The prior research fo-
cuses on examining the completeness of the given patch, but
our aim is to not only identify partially fixed bugs but also to
expose new bugs or vulnerabilities introduced by the patch.
Lastly, the prior research focuses on examining problematic
bug fixes in userspace programs, whereas our goal is to un-
veil incorrect kernel patches. The complexity of the kernel
limits the utility of many program analysis techniques (such
as symbolic execution adopted in [46]).
Directed Fuzzing. In the past, various directed fuzzing meth-
ods have been introduced. AFLGo [34] prioritizes the in-
put seed with the shortest path to the target program site
at the basic block level. Hawkeye [35] calculates the sim-
ilarity between the input seed and the potential execution
trace, and uses this similarity to guide the selection of input
seeds. To perform directed fuzzing on the Linux kernel, Sem-
Fuzz [58] combines NLP techniques with program analysis.
KATCH [49] selects the input with the shortest distance to the
target, and then uses symbolic execution. Savior [37] only em-
ploys symbolic execution if it visits branches that can reach
targets with potentially buggy code. BEACON [41] calcu-
lates preconditions for reaching the target and prunes paths
that cannot reach the target, avoiding wasted computational
resources. FuzzGuard [62] trains a predictor classifier and
uses it to prioritize inputs more likely to reach bugs. Regres-
sion greybox fuzzing [61] proposes a new power scheduling
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mechanism, favoring seeds that cover frequently changing
code.

Unlike prior directed fuzzing techniques, our approach uti-
lizes a distinct feedback mechanism to guide the fuzzer to-
wards the target code. Our directed fuzzing method prioritizes
not just the reachability of the target code, but also diversify-
ing the paths towards it, resulting in a wider exploration of
execution contexts. Additionally, our directed fuzzing takes
into account the sequential reachability of the code.

9 Conclusion

Incorrect kernel patches can be problematic, transforming a
non-exploitable bug into a highly exploitable vulnerability.
Our research discovers that a kernel fuzzer, which uses alter-
ation to the variables’ read-write operations as a guide, has
the potential to be a more effective tool for pinpointing in-
correct kernel patches. We believe that an automated method
for tracking down incorrect kernel patches could greatly im-
prove the overall quality of patches for the Linux kernel. As
a next step in our research, we plan to explore the identifi-
cation of incorrect patches for userland programs. This will
help to ensure the reliability and security of the Linux kernel
and its userland programs, a crucial component of modern
computing.
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A Procedure of Manual Validation

In Section 6, it was stated that when a kernel error is encoun-
tered against an input (e.g., a PoC program), on a patched
kernel, we revert the patch and rerun the input on the un-
patched kernel. If the error occurs on the unpatched kernel
and is different from the one observed on the patched kernel,
it is referred to as manual validation. This process involves
manually verifying if the error is a result of the patch. Be-
low, we outline the steps involved in our human validation
procedure.

When KLAUS generates a kernel error report, we first run
the associated PoC program and capture a detailed record
of the kernel execution using ftrace. If the kernel execution
does not include the patch’s code changes, we conclude that
the patch is correct since the relevant code was not executed.
In other cases, from the error report, we extract the series of
kernel function calls leading up to the error, along with the
relevant kernel object. Starting from the latter, we perform
manual backward analysis to pinpoint the root cause of the
error. This enables us to determine the correctness of the patch
and conclude our human validation process.

B AWRP Coverage

Figure 2 shows the coverage of AWRP across three differ-
ent kernel fuzzers – – Syzkaller, KLAUS implemented with
symbolic tracing, KLAUS implemented with branch instrumen-
tation.
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Figure 2: The coverage of AWRP across three different kernel fuzzers – Syzkaller, KLAUS implemented with symbolic tracing
(denoted by KLAUS with B.I), KLAUS implemented with branch instrumentation (denoted by KLAUS with S.T.). Note that the x-axis
represents the time spent on fuzzing, and the y-axis indicates the AWRP coverage.
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