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Abstract—Nowadays, fuzz testing has significantly expedited the vulnerability discovery of Linux kernel. Security analysts use the
manifested error behaviors to infer the exploitability of one bug and thus prioritize the patch development. However, only using an error
behavior in the report, security analysts might underestimate the exploitability of the kernel bug because it could manifest various error
behaviors indicating different exploitation potentials. In this work, we conduct an empirical study on multiple error behaviors of kernel
bugs to understand 1) the prevalence of multiple error behaviors and the possible impact towards the exploitation potential; 2) the
factors that manifest multiple error behaviors with different exploitation potential. We collected all the fixed kernel bugs on Syzbot from
2017 to 2022. We observed that multiple error behaviors manifested by kernel bugs are prevalent in the real world. Then we analyze a
sample dataset (162 unique bugs) and identified 6 key contributing factors to multiple error behaviors. Finally, based on the empirical
findings, we propose an object-driven fuzzing technique to explore all possible error behaviors of kernel bugs. To evaluate the utility of
our proposed technique, we implement GREBE and apply it to 60 real-world kernel bugs. On average, GREBE could manifest 2+
additional error behaviors for all kernel bugs. For 26 kernel bugs, GREBE discovers higher exploitation potential. We report to kernel
vendors some bugs – the exploitability of which was wrongly assessed and the corresponding patch has not yet been carefully applied
– resulting in their rapid patch adoption.
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1 INTRODUCTION

TODAY, Linux powers a wide variety of computing sys-
tems. To improve its security, researchers and analysts

introduced automated kernel fuzzing techniques and var-
ious debugging features/sanitizers. With their facilitation,
it becomes easier for security researchers and kernel de-
velopers to pinpoint a bug in the Linux kernel. However,
it is still challenging to determine whether bug conditions
are sufficient to represent a security vulnerability. For exam-
ple, a bug that demonstrates out-of-bound error behaviors
usually implies a higher chance to exploit than those that
exhibit null pointer dereference error behaviors. As such,
previous researches [2], [3], [4] indicate that the manifested
error behaviors of bugs play a critical role in prioritizing
exploit and patch development efforts.

In practice, when existing fuzzing tools identify a kernel
bug, the error behavior in the report may be one of its
possible manifested error behaviors. For example, as we will
elaborate in Section 2, by following different paths, a kernel
bug can exhibit not only a less-likely-to-exploit GPF (Gen-
eral Protection Fault) error behavior but also a highly-likely-
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to-exploit UAF (Use-After-Free) error behavior. As such,
with the only manifested error behaviors in the bug report,
security analysts may underestimate the exploitability of the
underlying bug.

In order to address the above problem
(i. e., Exploitability Underestimation Problem), one
instinctive reaction is to take a bug report as input, analyze
the root cause of that kernel bug, and infer all possible
consequences that the bug could potentially bring about
(e.g., Out-Of-Bound Access, Null Pointer Dereference,
Memory Leak, and etc.). However, root cause diagnosis is
typically considered a time-consuming and labor-intensive
task. As a result, a more realistic strategy for tackling this
problem is to explore more possible error behaviors of a
given kernel bug without performing root cause analysis.
Then, from the newly unveiled error behaviors, security
analysts could better estimate its possible exploitability in a
more accurate fashion.

Goal and Approach. In this paper, we conduct an empirical
study on multiple error behaviors manifested by the same
kernel bug. Our goal is to understand 1) the prevalence
of multiple error behaviors manifested by kernel bugs and
the possible impact of multiple error behaviors towards the
exploitation potential; 2) the factors that manifest multiple
error behaviors implying different exploitation potential.
Based on the insights obtained from our empirical study, we
further design a new kernel fuzzing mechanism to explore a
new manifestation of error behaviors from the same kernel
bug, which helps security analysts assess the kernel bugs
more accurately. Note that, we define a new manifestation of
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the same bug as a new error behavior manifested by the same
kernel bug, different from the error behavior in the original
bug report.

The first key challenge in our approach is to obtain the
“ground-truth” for multiple error behaviors manifested by
kernel bugs. While it is difficult to resolve for open bugs
that are currently being analyzed by developers, we could
group bugs that are already fixed. The idea is to link bug
reports based on their “patches” — if multiple bug reports
are fixed by the same patch, these bug reports are highly
likely to be manifested by the same bug. After this initial
grouping, we then manually analyze these bug reports and
the underlying bugs to identify contributing factors behind
the manifestation of multiple error behaviors. In this work,
we have collected all the fixed kernel bugs reported on
Syzbot from September 2017 to January 2022. Based on
their patches, we separate these 3,352 bug reports into 2,296
unique groups. Out of the 3,352 error reports, 1,496 (44.6%)
belong to multiple error behaviors manifested by the same
kernel bugs.

To achieve our goal, we take action in two folds. First,
we analyze the “ground-truth” dataset and get some obser-
vations. 19.2% (i. e., 440) kernel bugs have multiple error be-
haviors. A phenomenon has been discovered that the more
error behaviors one kernel bug has, the higher possibility
of likely-to-exploit error behaviors the bugs can manifest.
Second, we manually analyze these kernel bugs to identify
the causes behind multiple error behaviors. We choose
162 kernel bugs with multiple error behaviors (162/440 =
36.8%), which is reasonably large for our study. Under the
guidance of an approved IRB, 5 security experts follow a
rigorous analysis procedure to reproduce the kernel bugs,
and analyze the code changes and the developer’s notes to
figure out the causes behind multiple error behaviors. This
highly time-consuming experiment took nearly 3000 man-
hours to complete. Through intensive manual efforts, we
collectively identify 6 key contributing factors to multiple
error behaviors. And in our sample dataset, input difference,
memory dynamics, thread interleaving can manifest multiple
error behaviors leading to different exploitation potential.

Another key challenge is in the new kernel fuzzing
mechanism. Existing kernel fuzzing methods are mainly
designed to maximize the code coverage (e.g., Syzkaller [5],
KAFL [6]). They suffer from inefficiency and ineffective-
ness issues since their design is unsuitable to find various
execution paths and contexts relevant to the same buggy
code fragment. To this end, we propose a customized kernel
fuzzing mechanism that concentrates its fuzzing energy on
the buggy code areas, and meanwhile, diversifies the kernel
execution paths and contexts towards the target buggy code
fragment.

Technically speaking, our proposed kernel fuzzing
mechanism could be viewed as a directed fuzzing approach.
It first takes an error report as input and extracts the ker-
nel structures/objects relevant to the reported kernel error.
Then, the fuzzing method performs fuzzing testing and
utilizes the hits to the identified kernel objects as feedback to
the fuzzer. Since the identified kernel structures/objects are
essential to the success of triggering the reported bug, using
them to guide fuzzing could narrow the scope of the kernel
fuzzer, making the fuzzer focus mostly on the paths and

contexts pertaining to the reported bug. In this work, we
implement this approach as an object-driven kernel fuzzing
tool and name it after GREBE, standing for “fuzzinG foR
multiplE Behavior Exploration”.

Using our tool to explore new error behaviors for 60 ker-
nel error reports, we show that GREBE could demonstrate
2+ different error behaviors on average for each bug report.
For many kernel bugs (26 out of 60), we also observe that
their newly identified error behaviors usually demonstrate
a higher exploitation potential than those in the original
bug reports. More surprisingly, through the paths and con-
texts that we newly identified, we also discover 6 kernel
bugs with seemly unexploitable memory corruption ability
(e.g., GPF, WARN) could be turned into ones with powerful
memory corruption ability that can be utilized to perform an
arbitrary execution. All these bugs have not demonstrated
any exploitability before. We report this finding to some
kernel vendors – that have not yet applied the ready-to-
use patches in their products – resulting in their immediate
patch adoption.

To the best of our knowledge, this is the first work that
studies and exposes a bug’s multiple error behaviors for
exploitability exploration. The exhibition of multiple error
behaviors could potentially expedite the remedy and elim-
ination of highly exploitable bugs from the kernel. Besides,
it could also augment security analysts to turn an unex-
ploitable primitive into an exploitable one. Last but not least,
demonstrating a bug with multiple error behaviors could
also potentially benefit the bug’s root cause diagnosis [7].

In summary, this paper makes the following contribu-
tions:
• We empirically study the phenomenon (i. e., multiple er-

ror behaviors manifested by the same bug) to explore the
prevalence of this phenomenon and its impact on bugs’
exploitation potential.

• We organize security experts to perform an in-depth anal-
ysis of kernel bug dataset. We identify several factors that
manifest multiple error behaviors with different exploita-
tion potentials.

• Based on our empirical findings, we design a novel object-
oriented kernel fuzzing approach to explore a bug’s mul-
tiple error behaviors.

• We implement GREBE, and demonstrate its utility in find-
ing multiple error behaviors for real-world kernel bugs.
Given a kernel bug demonstrating only a low possibility
of exploitation, our proposed method could find its other
error behaviors indicating much stronger exploitability.

2 DATA COLLECTION METHODOLOGY

In this section, we first present our methodology and then
describe how to collect our dataset to measure the preva-
lence of manifested error behaviors. Finally, we depict the
experiment workflow to analyze the contributing factors
causing multiple error behaviors.

2.1 Methodology

Definition of Unique Bug and Manifested Error Behaviors.
A bug is uniquely defined by its root cause, i. e., if different
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error reports share the same root cause, then we define them
as multiple error behaviors manifested by the same bug.

Challenges. Our first challenge is to link and verify error
reports manifested by the same bug to establish “ground-
truth”. The second challenge is that we need to extensively
analyze kernel error behaviors to understand the root cause
of kernel bugs and underlying reasons for manifested error
behaviors. Unfortunately, this analysis is hard to be auto-
mated and time-consuming. The third challenge is that bug
analysis requires a high level of domain knowledge, even
with manual analysis.

Approaches. With the above three challenges in mind, we
apply the following strategies in our study. First, instead of
manually analyzing “open” kernel bugs, we focus on the
historical kernel bugs that are already patched by kernel
developers. By analyzing these patches, we can potentially
group multiple error behaviors from the same kernel bug.
Furthermore, we will manually confirm the root causes and
create our “ground-truth” dataset; Second, considering the
time-consuming nature and high-level domain expertise, we
prioritize the depth of our analysis while maintaining a rea-
sonable scale of generalizable results. We filter kernel bugs
with reproducers that manifest multiple error behaviors and
select some of them as our sample dataset. Then we form a
focused group of security analysts to identify the factors to
the manifestation of error behaviors. Based on the results,
we will propose solutions to explore new error behaviors.

2.2 Kernel Bug Dataset
To conduct our study, we choose Syzbot platform [8] to
collect kernel bugs reported by Syzkaller. The reasons are
1) Syzkaller found 4335 kernel bugs (3352 of them are now
patched) in recent five years. Quantitatively speaking, these
bugs are more than the kernel bugs identified in the past
20 years before Syzkaller was invented; 2) Syzkaller files
and sends error reports to Syzbot platform. Each bug has its
own webpage that contains key information (e.g., vulnerable
kernel version, kernel configuration file, reproducer). We
regard the bug title in the webpage as the error behav-
ior, for example, the bug title KASAN: use-after-free Read in

↪→ map_lookup_elem indicates that the kernel bug is detected
by KASAN [9] and the error use-after-free occurs in the
function map_lookup_elem. The same kernel bug can manifest
different error behaviors (i. e., bug titles) due to different
execution contexts.

Syzbot marks a kernel bug as “Fixed” when it is fixed,
and fills one additional field - “Fix commit”. As discussed
above, we take advantage of “Fixed” bugs to establish the
ground-truth for our study. The rationale behind is that “Fix
commit” shows the patch that fixes the underlying kernel
bug. And the error behaviors that are eventually fixed by
the same patch are highly likely caused by the same root
cause 1 (i. e., the same kernel bug).

Our Dataset. We crawl all the “Fixed” bugs from Syzbot
dashboard. Table 1 covers all the corresponding error re-
ports from September 6, 2017 to March 1, 2022. In total,

1. Group manifested error behaviors with the patch is a reliable
method except for rare cases, e.g., the incorrect patch was assigned due
to human errors.

Category GT Kernel Bugs # of Error Behaviors
Fixed Bugs 2296 3352
Manifested 440 1496
Sampled 162 484

TABLE 1: Dataset overview. “GT Kernel Bugs” refers to the
number of ground-truth kernel bugs after linking with fix
commits.

there are 3352 error reports with 2296 unique kernel bugs.
Then we analyze the patches of these bugs and identify 440
groups containing two or more error reports. In each group,
all the error reports share the same patch and each error
report represents one error behavior of the same bug.

Note that, our manual analysis of these groups has
confirmed that one patch is always used to fix one bug
which is consistent with the policy - “one patch per bug”
that the Linux kernel community has been enforcing before
pushing a patch to the kernel [10]. As such, our ground-
truth dataset is valid.

Sample Dataset.To understand the causes of manifested
error behaviors, we organize domain experts to analyze
the groups of error behaviors manually. As mentioned, we
prioritize the depth of analysis and sample a subset of groups
that has multiple error behaviors. Our sampling strategy is
not completely random. Instead, we first prioritize analyz-
ing bugs that cover more diverse error behaviors (i. e., bug
titles); second, we prioritize analyzing bugs that have more
severe error behaviors. For example, Out-Of-Bound, Use-
After-Free and Invalid-Free are considered to be severer
bugs [11].

Among 440 groups with multiple error behaviors, we
sampled 162 groups with 484 error reports. Meanwhile,
Figure 1 shows that our sample dataset covers diverse
types of error behaviors. In addition, the size of our sample
dataset is larger than most existing datasets in the previous
works [12].

Justifications on the Dataset Size. We believe our dataset of
162 unique kernel bugs is reasonably large for our purposes.
On one hand, 162 bugs already cover 36.8% of bug groups
that have multiple error behaviors. On the other hand,
our dataset is already several times larger than existing
datasets used by previous works for kernel bug analysis.
For example, after a literature review, we find that most of
the used kernel bug datasets contain fewer than 20 bugs [13],
[14], [15], [16], [17], [18], [19], [20]. Several works studied 20-
60 bugs [12], [21], [22], [23], but they are not focusing on bug
reproduction and root cause analysis. Instead, most of them
focus on analyzing the code changes in the patches that can
be easily automated. A related work [24] collected 373 CVEs
to verify the generated hot patches (for Android kernels)
and only used 3 working exploits to verify the correctness
of generated patches.

2.3 Experiment Overview
We design an experiment to examine the reasons that man-
ifest different error behaviors for the same bug, with the
approval of IRB (STUDY00008566).

Experiment Workflow. The analyst 1) gathers all the er-
ror reports and corresponding information (e.g., vulnerable
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Fig. 1: Number of error be-
haviors under each crash
type in our sample dataset.
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haviors for each bug in the
Manifested category.

Exploitation Potential Kernel Bug Errors

Likely to exploit KASAN (e.g., use-after-free,
out-of-bound access, double-free)

Less likely to exploit BUG, GPF, NULL ptr dereference,
panic, WARN, wrappers (e.g., pr err)

TABLE 2: The summary of the types of error behaviors in
bug reports and their corresponding exploitation potential.

source code, kernel configuration, reproducers); 2) compiles
the vulnerable Linux kernel and reproduces the kernel bug
with the provided reproducer; 3) verifies the effectiveness
of patch and examines the reasons by reading the commit
message and corresponding code changes; 4) identifies the
corrupted data objects based on the root cause and then
compares the propagation path of corrupted data objects
from the root cause to the crashing site; 5) finally identifies
the factors that contribute the manifestation of multiple
error behaviors.

The Analyst Team. We organize a strong team with 5
security analysts to conduct our experiment. Among them,
two have first-hand experience in regularly analyzing Linux
kernel bugs, writing kernel exploits and developing kernel
patches. And the rest have in-depth knowledge of different
systems in the Linux kernel and actively contribute to the
kernel community. When one security analyst finishes the
analysis of one group, this analyst presents the details of the
underlying bug and explains the identified factors to other
analysts for a peer review. After all the analysts confirm the
correctness of the results, we close the case for the given
group.

3 STUDY RESULT

In this section, we analyze kernel bug dataset and illustrate
the general impact of multiple error behaviors. Next, we will
focus on the reasons behind the manifestation of multiple
error behaviors. Finally, we filter out reasons that help mani-
fest multiple error behaviors implying different exploitation
potentials.

3.1 Implication of Multiple Error Behaviors.

We analyze kernel bugs and corresponding error reports in
our dataset listed in Table 1. In the following, we character-
ize the manifested error behaviors for kernel bugs.

Prevalence of Multiple Error Behaviors. As shown in
Table 1, there are 440 groups of error reports that contain

Category Likely to exp. Less likely to exp.
Bugs with OEB 429/1856 (23.1%) 1427/1856 (76.9%)
Bugs with MEB 198/440 (45.0%) 242/440 (55.0%)

TABLE 3: Exploitation Potential of kernel bugs. Bugs with
OEB means kernel bugs with only one error behavior; while
Bugs with MEB means kernel bugs with multiple error
behaviors.

multiple error behaviors. In other words, 19.2% of fixed ker-
nel bugs on Syzbot have two or more different error reports.
Figure 2 depicts the number of error reports per group in our
Manifested category (440 groups in total). We find that about
60.9% of groups have only two error behaviors. However,
about 14.3% of the bug groups have more than five error
behaviors. The largest group has 45 distinct error reports.
This indicates the same bug can cause highly diverse error
behaviors.

Exploitation Potential of Multiple Error Behaviors. Ta-
ble 3 confirms the hypothesis – bugs with multiple error
behaviors have higher exploitation potential compared to
bugs with only one error behavior. More specifically, given
a bug, if any of error behavior(s) is likely to exploit, we
define this bug has a higher exploitation potential. To
obtain the relationship between an error behavior and its
exploitability, we conducted a user study under the ap-
proved IRB (STUDY00008566). As is depicted in Table 2,
each error behavior is categorized into either “likely to
exploit” or “less likely to exploit”. Compared with error
behaviors (e.g., BUG/GPF/WARN/NULL ptr deref), kernel
error behaviors such as double-free, use-after-free, and out-
of-bound imply higher exploitability. As a result, in Table 3,
bugs with multiple error behaviors has more likely-to-
exploit bugs (45%) than bugs with one error behavior (23%).
In addition to the above hypothesis, another finding is that,
the more error behaviors one bug has, the higher possibility
of likely-to-exploit error behaviors the bugs can manifest.
More specifically, we divide bugs in the manifested category
into groups with the same amount of error behaviors. For
each group, we calculate the percentage of likely-to-exploit
error behaviors. For groups with above 7 error behaviors,
this rate is mostly higher than 40%, while groups with less
than 7 error behaviors only have less than 40% percentage.

Of all fixed bugs on Syzbot, 19.2% kernel bugs have
multiple error behaviors. 14.3% of groups have more
than 5 error behaviors, even one bug can have 45
distinct error behaviors. Moreover, the more error be-
haviors one bug has, the higher possibility of likely-to-
exploit error behaviors the bugs can manifest.

3.2 Contributing Factors

Manual Crash Analysis. This manual analysis is focused
on the sample dataset that includes 162 kernel bugs and 484
error behaviors (see Table 1). The analysis took 5 security
analysts about 3,000 man-hours to finish. On average, each
kernel bug took almost 4 hours to complete all the steps
proposed in Experiment Workflow. Based on our experi-
ence, the most time-consuming part is to understand the
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Factors Groups Percentage
Different Inputs 70 48.3%
Memory Dynamics 25 17.2%
Thread Interleaving 24 16.6%
Different Sanitizers 21 14.5%
Inline Function 17 11.7%
Kernel Versions and Branches 13 9.0%

TABLE 4: The number of groups that are affected by each
factor. One group could be affected by multiple factors.

1 static void tun_attach(struct tun_struct *tun, ...)
2 {
3 if (tun->flags & IFF_NAPI) {
4 // initialize a timer
5 hrtimer_init(&napi->timer, CLOCK_MONOTONIC,
6 HRTIMER_MODE_REL_PINNED);
7 // link current napi to the device’s napi list
8 list_add(&napi->dev_list, &dev->napi_list);
9 }

10 }
11
12 static void tun_detach(struct tun_file *tfile, ...)
13 {
14 struct tun_struct *tun = rtnl_dereference(tfile->tun);
15 if (tun->flags & IFF_NAPI) {
16 // GPF happens if timer is uninitialized
17 hrtimer_cancel(&tfile->napi->timer);
18 // remove the current napi from the list
19 netif_napi_del(&tfile->napi);
20 }
21 destroy(tfile); // free napi
22 }
23
24 void free_netdev(struct net_device *dev) {
25 list_for_each_entry_safe(p, n,
26 &dev->napi_list, dev_list)
27 netif_napi_del(p); // use-after-free
28 }

Listing 1: The code snippet of one bug in Linux kernel.
When triggered with different system call sequences and
arguments, the bug demonstrates two different error
behaviors – a general protection fault error and a use-after-
free error.

root cause and identify the propagation path of corrupted
variables from the root cause to the crashing site.

Out of the 162 groups in our sample dataset, we suc-
cessfully reproduced and examined the root causes for 151
groups. Other non-reproducible bugs cannot be analyzed
in our experiment. And we find 6 groups in which Syzbot
incorrectly assigned the fix commit. Therefore, we use the
rest 145 groups as our final set to illustrate our findings on
the contributing factors to multiple error behaviors of one
bug.

We identify 6 factors leading the manifestation of multi-
ple error behaviors, summarized in Table 4.

Factor 1: Different inputs. The first reason for multiple
error behaviors is the input difference. Given a kernel bug,
different inputs can lead to various execution contexts and ex-
ecution paths. Following these paths under various execution
contexts, the bug can demonstrate multiple error behaviors
and form different error reports.

Take the group #aec72f3392b1 2 in Listing 1 as an ex-
ample, there are two manifested error behaviors - general
protection fault [25] and use-after-free [26]. In Linux kernel,
a tun device is shared by all opened tun files, and each

2. We take the patch id shown on the Syzbot dashboard as the group
id

1 void netlink_ack(..., struct netlink_ext_ack *extack) {
2 if (nlk_has_extack && extack && extack->_msg)
3 // GPF occurs if _msg points to invalid memory
4 tlvlen += nla_total_size(strlen(extack->_msg) + 1);
5 if (nlk_has_extack && extack) {
6 if (extack->cookie_len)
7 // OOB occurs if cookie and length do not match
8 WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE,
9 extack->cookie_len,

10 extack->cookie));
11 }
12 }

Listing 2: The code fragment illustrating the difference
of memory dynamics can mainfest two different error
behaviors – GPF and Out-of-Bound(OOB)

tun file can update tun->flags in the function tun_attach.
The underlying bug results from the potential inconsistent
state of the flag tun->flags between tun_attach at Line 1 and
tun_detach at Line 12.

In the former report, the PoC program invokes the 1st
ioctl that calls tun_attach with IFF_NAPI in tun->flags unset.
In this way, the kernel neither initializes the hrtimer nor
adds the napi into the list of dev->napi_list. Next, the
PoC program invokes the 2nd ioctl that updates IFF_NAPI

↪→ before tun_detach, which causes the inconsistent state be-
tween tun_attach and tun_detach. Finally, the kernel invokes
hrtimer_cancel on the uninitialized timer object at Line 17,
leading to the error behavior - GPF. Compared with the
former report, the PoC program in the latter report adjusts
the order of two ioctl syscalls. In other words, the 1st ioctl

invokes tun_attach with IFF_NAPI set, the kernel initializes a
hrtimer and add napi into the list of dev->napi_list from Line
5 to Line 8. Then the 2nd ioctl clears IFF_NAPI in tun->flags

↪→ before the tun_detach, the kernel skips the cancellation
of hrtimer and the deletion of napi, but destroys the tun
file. As a result, this inconsistency leaves a dangling pointer
in the list of dev->napi_list. In the last, free_netdev at Line
24 dereferences the freed object - napi, causing the error
behavior - UAF.

Table 4 shows input difference affects 70 of groups
(48.3%) we have analyzed. This is the most prevalent reason
for multiple error behaviors.

Factor 2: Memory Dynamics. In Linux kernel, the slab
allocator is shared among all the kernel subsystems, re-
sponsible for dynamic memory management. The memory
layout of Linux kernel at runtime is non-deterministic. The
same for the memory value of any uninitialized kernel
variables. As a result, when the underlying bug is triggered
by a PoC program, the memory status (including memory
layout and value) can be uncertain, causing the same bug
to manifest different error behaviors and produce different
error reports.

As depicted in Listing 2, the underlying kernel bug
skips the initialization of extack (i. e., the 4th argument of
netlink_ack), leaving this variable uninitialized. Therefore,
the content of extack is non-determinstic, i. e., the fields _msg,
cookie_len and cookie are unknown at runtime. If extack->

↪→ _msg points to an invalid memory area, the kernel triggers
a general protection fault - GPF. However, if extack->_msg is
correct, the kernel goes down and uses cookie and cookie_len

↪→ as the base address and length to access the cookie. If
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1 // Thread A
2 void put_pi_state(... pi_state) {
3 if (atomic_dec_and_test(&pi_state->refcount)) {
4 kfree(pi_state);
5 }
6 }
7
8 // Thread B
9 void exit_pi_state_list(... curr) {

10 struct list_head *h = &curr->pi_state_list;
11 struct futex_pi_state pi_state = list_first_entry(h);
12 lock(&pi_state->pi_mutex.wait_lock);
13 get_pi_state(pi_state);
14 }
15
16 void get_pi_state(.. pi_state) {
17 WARN_ON_ONCE(!atomic_inc_not_zero(
18 &pi_state->refcount));
19 }

Listing 3: The code fragment illustrating the difference of
thread interleaving can lead to two different error behaviors
– Warning and Use After Free.

cookie_len is greater than the length of cookie, it can lead to
another error behavior - Out-of-Bound (OOB).

As shown in Table 4, 25 of groups are affected by this
factor – memory dynamics.

Factor 3: Thread interleaving. Linux kernel is a fully multi-
threaded system that supports many tasks running at the
same time. Incorrect synchronization (or missing synchro-
nization) between kernel tasks not only introduces concur-
rency bugs, but may also produce different errors behaviors.

Listing 3 shows an example where pi_state is a variable
shared between thread-A and thread-B. With the same PoC
program, the kernel could experience different error behav-
iors in different thread interleaving. For one possible situa-
tion, thread-A invokes the function put_pi_state, decreasing
the reference count for pi_state to zero (Line 3). Following
thread-B calls the function get_pi_state and raise a warning
at Line 17. However, another synchronization between both
threads is to call the function put_pi_state in thread-A prior
to thread-B executing Line 12, which then results in pi_state

being deallocated while pi_state of thread-B still points to it.
At Line 12, thread-B dereferences the dangling pointer and
a use-after-free error occurs.

Among all the kernel bugs we inspected, we discover
that thread interleaving affects 24 bug groups (i. e., 16.6%).

Factor 4: Sanitizers. The state-of-art kernel fuzzers usually
make use of all kinds of sanitizers to discover kernel bugs.
Different sanitizers are designed to detect different kinds
of error behaviors. Thus how to setup kernel sanitizers is
also a factor contributing to the manifested error behaviors.
Similar to previous two factors - memory dynamics and
thread interleaving, we find that 21 of groups (i. e., 14.5%)
are affected by this factor (see Table 4).

Factor 5: Inline Function. The error behaviors of one bug
can also be affected by the compilation of kernel code. To
be specific, the compiler can make an opposite decision
regarding if a function is inline, depending on the kernel
configurations, the compiler and its version. In such case, we
find that, although error behaviors of one bug have different
functions, in fact they share the same crashing trace. Our
analysis shows that this factor affects 17 of groups in the
sample dataset.

1 unsigned int tipc_poll(... sock) {
2 switch (sk->sk_state) {
3 case TIPC_OPEN:
4 // upstream a8750ddca918
5 if (!grp || tipc_group_size(grp))
6 // net-next 594831a8aba3
7 if (!grp || tipc_group_is_open(grp))
8 }
9 }

Listing 4: The code example indicating different kernel
versions and branches affect the manifestation of error
behaviors

Factor 6: Kernel Versions and Branches. One kernel bug
can exist in multiple kernel versions and branches. When
the same bug is triggered in the different kernel versions
and branches, it can manifest different error behaviors as
the code in the execution path changes across time.

As shown in Listing 4, the group #60c253069632 is a
use-after-free bug existing in many kernel versions. In
the commit a8750ddca918 of upstream repository, the error
site is reported in tipc_group_size; However, in the com-
mit 594831a8aba3 of net-next repository, the error site is in
tipc_group_is_open. Both are in the code block that gets ex-
ecuted when the condition sk->sk_state == TIPC_OPEN holds.
The only difference is the kernel version and branch.

Table 4 shows there are 9.0% of groups affected by this
factor.

Input difference is the most prevalent reason that con-
tribute to multiple error behaviors. The rest factors
in sequence are memory dynamics, thread interleaving,
sanitizers, inline function and kernel versions and branches.

3.3 Factors leading to different exploitation potential

In this part, we carry out a further analysis to filter out
contributing factor that can lead to different exploitation
potential. In the following, we will discuss all the factors
one by one.

Input difference. Out of 70 kernel bugs, we found that 23
groups of error behaviors indicating different exploitation
potential. Take Listing 1 as an example, this bug manifests
two error behaviors – less-likely-to-exploit GPF and likely-
to-exploit UAF with different syscall sequences. Therefore,
if only based on GPF, security analysts might infer this bug
is probably unexploitable. However, with GPF and UAF
multiple behaviors, security analysts might treat this bug
as probably exploitable.

Memory Dynamics. There are 2 of 25 groups in which
error behaviors show different exploitation potential. The
bug in Listing 2 generates two different error behaviors
– less-likely-to-exploit GPF and likely-to-exploit UAF with
different memory values. Compared with only GPF error
behavior, security analysts tend to regard this bug as likely-
to-exploit with the view of both two error behaviors.

Thread interleaving. Among 24 groups affected by this
factor in Table 4, 11 groups exhibit different exploitation
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potential. As shown in Listing 3, the manifested error behav-
iors caused by different thread interleaving are less-likely-
exploit WARN and likely-to-exploit UAF.

Sanitizers and inline function. Our sampled kernel bugs
affected by sanitizers and inline function do not incur any
exploitability change. For the former, no matter sanitizers
are enabled or not, the underlying execution path is exactly
the same. For the later, the underlying execution path is also
the same. The difference of error behaviors is due to the
naming convention of error reports in Syzkaller.

Kernel versions and branches. As to the exploitability of the
same bug in different versions and branches, it is an open
question depending on whether the code changes introduce
new powerful exploit primitives. From our manual analysis,
most bugs only change one function name or replace a func-
tion with a highly similar function (See details in Listing 4).
They do not exhibit different exploitablity potential with
multiple error behaviors.

Input difference, memory dynamics and thread interleaving
can manifest multiple error behaviors with different
exploitation potential, but Sanitizers and inline function
cannot. Kernel versions and branches may generate error
behaviors with different exploitability theoretically, but
our sample dataset does not have.

4 MULTIPLE ERROR BEHAVIORS EXPLORATION

In previous sections, our empirical study not only analyzes
the prevalence and implication of multiple error behaviors,
but also identifies the key factors that bring out these
phenomenon. In this section, we take advantages of these
identified contributing factors to explore multiple error be-
haviors of kernel bugs and prototype the solution as a tool.

4.1 Design Overview
As shown in Section 3, input difference and thread interleaving
are two factors that have the highest possibility to manifest
error behaviors with different exploitation potentials. Given
a kernel bug report, one instinctive reaction is to manipulate
kernel input and thread interleaving, and meanwhile, trig-
ger the same bug to explore other error behaviors. Existing
research works (e.g., HFL [27], Ruzzer [28], SnowBoard [29],
MUZZ [30]) design testing frameworks to explore only
thread interleaving, only test input or intelligently explore
both jointly. However, such approaches are not likely to be
effective since they avoid executing the same code paths or
repeating the same thread interleaving(i.e., the root cause
of the underlying concurrency bug) that has already been
explored. This does not match our ultimate goal since we
need to execute the same buggy code snippets repeatedly
with different contexts. Therefore, it is hard to consider input
difference, thread interleaving and triggering the same bug at
the same time. Since input difference is the most prevalent
contributing factors, we will only consider input difference
and triggering the same bug in this paper, leaving thread
interleaving as our future work.

Therefore, we turn our attention to directed fuzzing,
which mutates test inputs and exercises the buggy code

segment. However, directed fuzzing has its own limitation.
First, it is challenging to pinpoint the root causes of kernel
bugs required in the directed fuzzing correctly and auto-
matically. Second, even if we can make directed fuzzing
repeatedly reach out to the buggy code, it does not mean
the kernel bug can manifest multiple error behaviors.

Our Approach. In this work, we address this problem by ex-
tending an existing kernel fuzzing approach (i. e., Syzkaller)
with kernel-object guidance. From the experiment work-
flow, we learn that the root cause of a kernel bug usually
results from the inappropriate usage of a kernel object
contributing to an error behavior and the incorrect value
involved in computation with a kernel object, which is
further propagated to a critical kernel operation, forcing a
kernel to demonstrate an error behavior. As such, guided
by the objects relevant to the error behavior, we can have
the fuzzer away from those paths and contexts irrelevant to
the bug and thus improve its efficiency significantly.

To realize the idea mentioned above, our design com-
bines static analysis and kernel fuzzing techniques. As de-
picted in Figure 3, we first take as input a kernel bug report,
run the enclosed PoC program, and track down those kernel
structures involved in the kernel errors (e.g., struct tun_file

↪→ in the Listing 1). The objects in these types indicate
the possible objects under inappropriate usage or involving
computation with an incorrect value. Therefore, we further
examine the kernel source code and identify the statements
that operate the objects in these types. Then we treat these
statements as the sites critical to the success of kernel bug
triggering. As a result, we instrument these statements so
that we can collect the feedback of object coverage when
performing kernel fuzzing and then use this new coverage
to adjust the corresponding PoC program. In this work, our
kernel fuzzing mechanism takes as input the original PoC
program attached in the bug report. Using a new mutation
and seed generation method, varies the PoC program to
improve the efficiency and effectiveness in the exploration
of other error behaviors. In the following subsections, we
will discuss these techniques in detail.

4.2 Critical Structure Identification
In this work, we utilize backward taint analysis to identify
essential kernel structures (i. e., those involved in the error
specified in the given bug report). Here, we detail how we
identify the source and the sink and thus perform backward
taint analysis accordingly.

4.2.1 Report Analysis & Taint Source Identification
The Linux kernel enforces checks during execution and
examines whether pre-defined conditions are satisfied. Ac-
cording to the ways of checking, we categorize them into
explicit checking and implicit checking. If the conditions do
not hold, then the kernel runs into an error state and logs
critical information for debugging purposes.

Explicit Checking. The kernel developers explicitly formu-
late the checking as an expression and pass it to the standard
debugging features, such as WARN_ON and BUG_ON. Take the case
in Listing 5 as an example. The error is be reported if and
only if the predefined condition “!list_empty(&dev->work_list
↪→ )” at Line 4 is true at runtime. After the condition is
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Crash report:

general protection fault: 0000 [#1] SMP 

KASAN

RIP: 0010:hrtimer_active+0x211/0x410 

kernel/time/hrtimer.c:1142

…

crash site

obj_A, obj_B

obj_C

obj_A

obj_B

obj_C

(b) Object Filtering(a) Backward Taint Analysis

Popularity 

Ranking

Structure 

Graph 

Construction

obj_A

obj_B

(c) Kernel Instrumentation

Dedicated 

Mutation

Seed 

Generation

Seed 

Selection
Syzkaller

PoC:

mmap(…)
r0=syz_open_dev$tun(…)
ioctl$TUNSETIFF(r0,…)

…

(d) Customized Fuzzing

Fig. 3: The workflow of GREBE. (a) Following a kernel error trace obtained from a crash report, GREBE performs backward
taint analysis and identifies all the kernel objects involved in the crash. (b) Based on the objects’ rareness, GREBE narrows
down the objects critical to the kernel error. (c) Guided by the objects filtered out in the last step, GREBE instruments kernel
and treats the critical objects’ (de)allocation and dereference sites as the anchor sites. (d) GREBE customizes Syzkaller so that
it could leverage the anchor sites’ reachability feedback to select seeds. Besides, GREBE introduces a customized mechanism
to mutate seeds so that GREBE could diversify the ways to trigger the same kernel bug.

1 // in drivers/vhost/vhost.c
2 void vhost_dev_cleanup(struct vhost_dev *dev)
3 {
4 WARN_ON(!list_empty(&dev->work_list));
5 if (dev->worker) {
6 kthread_stop(dev->worker);
7 dev->worker = NULL;
8 dev->kcov_handle = 0;
9 }

10 }
11 // in include/asm-genric/bug.h
12 #define WARN_ON(condition) ({ \
13 int __ret_warn_on = !!(condition); \
14 if (unlikely(__ret_warn_on)) \
15 __WARN(); \
16 unlikely(__ret_warn_on); \
17 })

Listing 5: The code snippet that performs explicit checking.

label1:

…

tmp = icmp (conv, 0)

….

label2:

…

label3:

…

define bug(…)

…

1 // comparison

2 tmp = icmp (conv, 0)

3 // conditional jump

4 br (tmp, label1, label2)

5

6 label1:

7 call @printk(...) // log

8

9 label2:

10 br (label3) // direct jump

11

12 label3:

13 call @bug(...) // call

14

15 define bug(..)

16 call @printk(...) // log

Fig. 4: An illustrating example and its dominator tree, which
demonstrate two different methods of logging kernel errors.
Line 7 is a logging statement responsible for kernel error
recording. Line 15 is the wrapper of the logging statement
at line 16. The variable conv in line 1 is the taint source that
our proposed approach identifies. Note that for simplicity
we place the two error logging functions at two different
branches sharing the same conditional jump block. In the
real world, error logging cannot occur in this way.

satisfied, it is a patterned code block inside the macro
(WARN_ON) that includes a condition statement and a logging
statement will be executed. Therefore, the variable &dev->

↪→ work_list indicates a cause of the bug and should become
the starting point of our analysis (i. e., the taint source of
our backward analysis). Apart from this standardized way
to log kernel errors, developers can also build their own

1 // source code
2 walk->offset = sg->offset;
3
4 // pseudo binary code after instrumentation
5 kasan_check_read(&sg->offset, sizeof(var));
6 tmp = LOAD(&sg->offset, sizeof(var)); // first access
7 kasan_check_write(&walk->offset, sizeof(var));
8 STORE(tmp, &walk->offset); // second access

Listing 6: The code snippet that performs implicit checking.

macro that wraps a logging statement in a helper function
(e.g., the code in Line 15 & 16 of Figure 4).

To identify the condition that triggers the execution of
the logging statement and thus pinpoint the taint source,
we first trace back along the dominator tree until we find
a dominator basic block, the last statement of which is a
conditional jump (e.g., given the wrapped logging statement
in Line 16 of Figure 4, Line 4 is the statement linking to the
dominator basic block). Second, we treat the corresponding
comparison as the condition that triggers the execution of
the error logging (e.g., Line 2 in Figure 4). Finally, we extract
the corresponding variable in the condition as our taint
source (e.g., conv in Figure 4).

Implicit Checking. Implicit checking refers to the situa-
tion where the checking is instrumented by a compiler or
completed by hardware. Kernel Address Sanitizer (KASAN)
is such an example of a implicit checking which relies
on shadow memory to record the memory status. If the
instrumented kernel touches a freed memory region, it will
generate a bug report indicating the instruction that trig-
gers a use-after-free error. Regarding the implicit checking
done by interrupts (e.g., general protection fault detected
by MMU), the interrupt handling routine is responsible for
logging the corresponding instruction.

From bug reports generated by these debugging mecha-
nisms, we can easily identify the instruction that performs
the invalid memory access. With this information in hand,
our next step is to identify the variable associated with
that invalid memory access. However, the binary instruction
enclosed in the report contains no type information. To deal
with this problem, we map binary instructions with their
corresponding statements in the source code. In the case
the mapped source code is a simple statement with only
one load or store, we directly conclude that this statement
is the one causing the illegal memory access and treat the
operand variable as a taint source. However, if the identified
instruction links to a compound statement involving multi-
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ple memory loads and stores (e.g., walk->offset = sg->offset

depicted in Listing 6), we perform further analysis. To be
specific, we first examine the bug report and pinpoint the
specific instruction that captures the kernel error. Then, we
treat the memory access associated with the error-catching
instruction as our taint source. Take the case shown in
Listing 6 for example, the bug report indicates the error
is captured by the statement kasan_check_read(&sg->offset,

↪→ sizeof(var)) which associates with sg->offset. We deem
sg->offset in line 2 as the taint source.

4.2.2 Taint Propagation & Sink Identification

Recall that backward taint analysis aims to find critical
structures, i.e., those structures involved in the error spec-
ified in the given bug report. To do it, we again extract
the call trace from the bug report. Based on the trace, we
then construct its control flow graph and propagate the taint
source backward on the graph.

Along with the backward propagation, we use the fol-
lowing strategy to perform variable tainting. If the tainted
variable is a field of a nested structure or a union variable,
we further taint its parent structure variable and treat the
parent structure as a critical structure. The reason is that
the nested structure or the union variable is part of the
parent structure variable in the memory. If a field of the
nested structure or the union variable carries an invalid
value, it likely results from the inappropriate use of its
parent structure variable. When backward taint propagation
encounters a loop, we also propagate the taint to the loop
counter if the taint source was updated inside the loop.
By extending the taint to the loop variable, we can include
the corrupted variable, which could further help us identify
other structure variables relevant to the corruption.

In this work, we terminate our backward taint pro-
cess until one of the following conditions holds. First, we
terminate our taint analysis if the backward propagation
reaches out to the definition of a tainted variable. Second, we
terminate our taint propagation if it reaches out to a system
call’s entry, an interrupt handler, or the entry of the function
that starts the scheduler of work queue. It is simply because
they indicate the sites where the kernel debugging features
start to trace kernel execution for later stage debugging.
It should be noted that, while performing backward taint
propagation, we also extend propagation to the aliases of
the tainted variable. In this work, we treat structural types
of all the taint variables as the critical structure candidates
for our kernel fuzzing guidance.

4.3 Kernel Structure Ranking

As we will discuss below, using the structures identified by
backward taint analysis to guide kernel fuzzing and explore
the bug’s other error behaviors, we could still confront low
efficiency and even poor effectiveness. As a result, before
applying these structures and their corresponding objects to
guide our kernel fuzzing, we need to further narrow down
the kernel structures for kernel fuzzing guidance.

Kernel structure selection. Linux kernel maintains its code
quality with plenty of design patterns [31]. These patterns
provide a suggested practice and framework to manage data

1 static inline void *__skb_push(struct sk_buff *skb, ...)
2 {
3 return skb->data;
4 }
5
6 int ip6_fraglist_init(...)
7 {
8 struct frag_hdr *fh;
9 // type casting from void* to struct frag_hdr*

10 fh = __skb_push(skb, sizeof(struct frag_hdr));
11 }

Listing 7: The code snippet indicating type casting.

in a commonly recognized fashion. There are many struc-
tures (e.g., struct list_head, struct sk_buff) used pervasively
in Linux kernel codebase. Including such popular struc-
tures for kernel fuzzing guidance, the kernel fuzzer would
inevitably explore a large code space, driving the fuzzer
away from the buggy code attributing to the error specified
in the report. Apart from this kind of popular structures,
there are other kinds of popular structures pertaining to
abstract interface. Therefore, to preserve the kernel fuzzer’s
efficiency in exploring a bug’s multiple behaviors, we need
to exclude these popular structures from our kernel fuzzing
guidance.

To pinpoint and exclude popular structures for multiple
error behavior exploration, we design a systematic approach
to ranking the kernel structures based on their popularity. At
a high level, this method constructs a graph describing the
reference relationship between kernel structures. Each node
in the graph represents a kernel structure, and the directed
edges between nodes indicate the reference relationships.
On the graph, we apply PageRank [32] which assigns each
structure a weight. In this work, we deem the structure
with a higher weight a more popular structure than others
and exclude them while performing kernel fuzzing for other
error behavior exploration.

Structure graph construction. To construct the structure
graph mentioned above, we first analyze all the structures
defined in the kernel source code. Given one structure, we
go through all its field members. If the field is a pointer
to another structure, we link the given structure to the
referenced structure. Suppose the field is a nested structure
or union, in that case, we expand them repeatedly until
we identify a self-referenced structure, or there is no more
nested structure/union in the definition. We link the given
structure directly to the structure in the last layer of expan-
sion, ignoring the union in the middle to shrink graph size.

In addition to analyzing the structure definition in kernel
source code, we also construct the structure graph with the
consideration of typecasting. Since the kernel supports poly-
morphism that uses a single interface to describe different
devices and features, one abstract data type can be cast to
a more concrete type. Take the function ip6_fraglist_init

↪→ in Listing 7 as an example. In this function, skb->data

is cast from void* to struct frag_hdr* which is further used
in the IPV6 networking stack. The void* is an abstract data
type, whereas the destination structural type struct frag_hdr

↪→ * is more concretized. As such, we add one more edge to
our structure graph, which links struct skb_buff to struct

↪→ frag_hdr.
Intuition suggests that the structures with more refer-
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ences are more popular ones. Besides, the structures refer-
enced by popular structures can also be popular because
they can also be used in many program sites in the kernel.
To identify these kernel structures, we utilize the PageRank
algorithm on the graph to rank their popularity. In this
work, we use only those kernel structures and objects with
lower ranks to guide our fuzzing process. In Section 5, we
discuss how we choose the page-rank score threshold to
distinguish popular structures from less popular ones.

4.4 Object-driven Kernel Fuzzing

With the critical structures identified, we now discuss how
we utilize these structures to facilitate kernel fuzzing and
thus explore multiple error behaviors for one kernel bug.

Instrumentation. Conventional kernel fuzzing methods in-
strument tracing functions to keep track of basic blocks
that have been executed. In this work, our fuzzing mecha-
nism introduces one additional instrumentation component
which is designed as a compiler plugin to examines each
statement in basic blocks and identifies those basic blocks
that take the responsibility for the allocation, de-allocation,
and usage of critical objects (i.e., the objects in the type
of critical structures). Specifically, the instrumentation com-
ponent introduces a new tracing function that replaces the
most significant 16 bits of the recorded basic block address
with a magic number to differentiate these basic blocks from
others. By observing the most significant 16 bits of addresses
in the code coverage feedback, we can easily pinpoint which
basic block pertaining to the critical objects is under the
operation of the corresponding fuzzing program.

Seed selection. With the facilitation of the above instru-
mentation, when running a fuzzing program, we can easily
determine whether it reaches a critical object. Once we
identify a new critical object coverage, we can add the
corresponding fuzzing program to our seed corpus. In this
work, we include the mutated seed program or the newly
generated seed program into the seed corpus only if one
of the following two conditions holds. First, the program
reaches out to an unseen basic block involving critical object
operations. Second, at least one system call in the program
covers more code, and the same system call has demon-
strated critical object operation in the previous fuzzing.

Seed generation & mutation. In this work, we initialize
the seed corpus with the PoC program enclosed in the bug
report. Every time, when generating a new seed fuzzing
program, we assemble the new fuzzing program by only
using system calls that have already been included in the
seed corpus. This is very different from the seed genera-
tion method used in the state-of-the-art fuzzing technique
(e.g., Syzkaller), which not only adopt the system calls en-
closed in the corpus but also bring in the new system
calls. The reason behind our design change is that exploring
multiple error behaviors of a kernel bug requires trigger-
ing a critical object accessing under different contexts or
through different execution paths. Randomly introducing
new system calls into the new seed fuzzing program could
enlarge the code coverage the fuzzing program can explore.
However, it inevitably detours the fuzzing program away
from the critical objects.

Intuition suggests that using the aforementioned seed
generation approach alone is not likely to explore a suf-
ficient number of contexts and paths pertaining to the
critical objects. As such, we further introduce the mutation
mechanism used in the existing kernel fuzzing technique
(i. e., Syzkaller). This mutation mechanism introduces into
the seed fuzzing program new system calls that are relevant
to the system calls already enclosed in the seed corpus. In
this way, we expect the fuzzing program could still stick
with the critical object and, at the same time, diversify the
execution contexts or the paths towards the object.

Mutation optimization. When performing the mutation for
a fuzzing program, the mutation mechanism of Syzkaller
utilizes pre-defined templates to guide the synthesis of new
fuzzing programs. A template specifies the dependency
between system calls and the argument format of corre-
sponding system calls. For example, Syzkaller’s template
specifies that the system call read requires a resource (i.e.,
a file descriptor) as one of its arguments, and the syscall
openat, will generate the corresponding resource. Under the
guidance of this template, Syzkaller could perform mutation
against a fuzzing program by appending the system call read
↪→ to the system call openat. The mutation ensures the seed
program is legitimate and thus avoids the kernel’s early
rejection against the fuzzing program.

As mentioned above, our mutation mechanism borrows
the method used in Syzkaller. As we will show in Section 6,
while this approach is useful in avoiding generating invalid
kernel fuzzing programs, it is still inefficient and sometimes
ineffective in guiding our kernel fuzzer to exhibit multiple
behaviors for one kernel bug. As we elaborate below, the
reasons behind this are two folds.

First of all, Syzkaller attempts to introduce various
system calls relevant to the seed program and randomly
manipulate system calls’ arguments. Mutation without the
consideration of them would inevitably incur low effective-
ness in exploring multiple error behaviors.

To resolve the problems above, we improve our fuzzing
approach by optimizing its mutation mechanism. More
specifically, we group the system call specification templates
based on the resource type the corresponding system calls
reply upon (e.g., categorizing system calls pertaining to the
network socket and device file separately). Within each
group, we then divide the enclosed system calls into two
subgroups. One is responsible for resource creation, and
the other is for their usage. With this grouping result, our
fuzzing component either replaces system calls with the
ones in the same group or inserts system calls that associate
with the resource shown in the seed program.

From empirical study, we learn that specific resources
and arguments are necessary for successfully triggering a
target kernel bug. So in addition to grouping templates
based on resource, our mutation mechanism also preserves
the values for the arguments seen in the original PoC
program if the types of these arguments do not fall into the
following four categories – constant, pointer referencing a
memory region, checksum, and resource (e.g., a file descrip-
tor for an opened file or an established socket). For argu-
ments in constant, they usually indicate the protocol under
fuzzing testing. In the fuzzing test, we need to alter these
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arguments to switch protocols and thus vary the contexts
under which the bug could be triggered again with different
error behaviors. For arguments in pointer and resources
types, when the kernel fuzzing changes the context or path
toward the buggy kernel code, the original PoC program’s
addresses could be illegal and thus incur early termination
of the fuzzing program. Regarding the checksum, if the
calculation source’s value varies in the mutation process,
the checksum should be updated accordingly. Preserving
the same checksum value could also result in the fuzzing
program’s early termination at the data validation phase.

Here we summarize the connection between our em-
pirical study and the fuzzing mechanism. First, the study
results show that input difference is the most prevalent
contributing factor manifesting multiple error behaviors
with different exploitation potentials, manipulated by our
fuzzing mechanism; Second, our empirical study analyzes
corrupted data objects to understand the root cause and fig-
ure out the underlying reasons for multiple error behaviors,
forming the idea of our feedback based on corrupted data
objects; Third, the seed selection, generation & mutation,
even optimization in the fuzzing mechanism get inspired
from the experience in our manual analysis.

5 IMPLEMENTATION

Based on LLVM infrastructure and the kernel fuzzing tool
Syzkaller, we implement our idea as a tool and name it
after GREBE. Below, we describe some critical details of our
implementation.

Critical structure identification. The input of our tool
is LLVM IR and a single bug report. In our implementa-
tion, we employ the approach in previous works [33], [34]
to generate the bitcode files. Briefly, we patch the LLVM
compiler to dump bitcodes before invoking any compiler
optimization passes. In this way, we can prevent compiler
optimization from influencing the accuracy of our analysis.
Recall that we extract the call trace from the bug report. The
call trace indicates the functions that have been called but
not yet returned when the kernel is experiencing errors. In
this extracted call trace, the function that has been called
last could be the one instrumented by the compiler. It does
not indicate the buggy function contributing to the error. As
such, we neglect these functions in the call trace and start
our analysis from the statement that activates the debugging
feature.

When using the backward taint analysis to identify crit-
ical structures, GREBE uses three instructions to extract the
structures’ type information. The first instruction is BitCast

in which the types before and after casting are specified.
GREBE records the types extracted from this instruction
as critical structures. The second instruction is Getelementor

↪→ which contains a pointer referencing a kernel object and
the object’s corresponding type information. Through the
analysis of this instruction, we can quickly obtain critical
structures. The third instruction is CallInst. We infer the
type information from the callee’s prototype and record
the structural type as critical structures. As mentioned ear-
lier, we treat system calls’ entries, interrupt handlers, and
workqueue processings as our taint sink. In our work, we

manually annotate all these sinks based on their naming
patterns.

Critical structure ranking. As is described in Section 4.3,
when constructing the structure graph for critical structure
ranking, we consider typecasting. In our implementation,
if the cast variable is the return value of a callee function,
we investigate the callee from the return statement and then
associate the destination type with the structure field. Again
take the case shown in Listing 7 as an example. The cast
variable skb->data is the return value of the callee function
__skb_push. By analyzing the callee function, we associate
struct frag_hdr with struct sk_buff.

Recall that we also rank structures based on their page-
rank scores and then use a page-rank score threshold to
filter out those popular ones. In this work, we choose this
threshold by using a standard univariate outlier detection
method [35]. This approach computes the mean and stan-
dard deviation of the page rank scores and then calculates
the Z-score for each structure further. Following the outlier
detection method, we use 3.5 more standard deviations as
the threshold. Since most kernel structures are less popular,
having a significantly low z-score, this threshold could well
distinguish popular kernel structures from the others.

Kernel fuzzing. As is described in Section 4.4, we instru-
ment the kernel to collect the usage of critical objects at
runtime. Since the support of Clang has been introduced re-
cently, which may not support all Linux kernel versions, we
perform instrumentation by using a GCC plugin instead of a
Clang pass. While performing a fuzzing program mutation,
we follow the design of MoonShine-enhanced [36] Syzkaller,
randomly mutating 33% system calls and replacing them
with others we have manually grouped.

When implementing the optimization mechanism that
reuses the arguments from the original PoC, for each system
call in the PoC program, we first find its specification in
Syzkaller and analyze the definition of its structural argu-
ments (i.e., StructType and UnionType). Then, we recursively
examine the structural arguments until no more new defi-
nitions can be found. Inside each structural definition, we
ignore ConstType, VmaType, ResourceType, and CsumType because
they represent constant, pointer, resource description, and
checksum respectively. As we discussed in Section 4.4, they
are not likely to help explore new paths to the buggy code.

6 EVALUATION

In this section, we first quantify GREBE’s effectiveness
and efficiency and compare it with a code-coverage-based
fuzzing method. Then, we demonstrate and discuss how
well GREBE could unveil exploitation potential for real-
world Linux kernel bugs.

6.1 Experiment Setup & Design
To evaluate our tool – GREBE, we select both open kernel
bugs and fixed kernel bugs from Syzbot as our test cases.
While selecting these bugs, we follow two key strategies.

Our first strategy is a purely random selection process
that follows two criteria. First, the bug report has to attach
a PoC program so that we can reproduce the error behavior
specified in the report. Second, the reported kernel error



12

cannot associate with Kernel Memory Sanitizer (KMSAN)
because KMSAN is still under development and has not yet
been merged into the Linux kernel mainline. By following
these two criteria, we construct a test corpus containing 50
Linux kernel bugs.

Our second strategy is a process dedicated to different
kernel versions (5.6 - 5.10)3. For each kernel version, we
choose two recently-reported reproducible kernel bugs as
our test cases. In this way, we construct another test corpus
with 10 Linux kernel bugs. Combining with the first corpus,
our dataset contains 60 unique kernel bugs which is the
largest dataset used in exploitability research.

It should be noted that we pick up partially kernel bugs
with multiple error behaviors and partially kernel bugs with
only one error behavior. For the bug that has multiple error
behaviors, we pick up one of the manifested error behaviors
as our starting point.

For each bug in our dataset, we built the corresponding
kernel in four QEMU virtual machines (VMs) for the purpose
of evaluating GREBE’s effectiveness and efficiency. For the
first two VMs, we ran our tool – GREBE and Syzkaller.
For the remaining two VMs, we ran GREBE without en-
abling its mutation optimization and Syzkaller with our
mutation optimization (i.e., Syzkaller’s variant). Besides, we
can compare it with the code-coverage-based kernel fuzzing
method and its variant (i.e., Syzkaller with our mutation
optimization). It should be noted that we use Syzkaller
as our baseline approach for evaluation because it is one
of open-sourced, code-coverage-based kernel fuzzing tools
but mostly because it can test nearly all kinds of kernel
components.

Given a kernel bug of our selection, its report, and a
kernel fuzzing tool under our evaluation, we include the
PoC program enclosed in the report into the initial seed set
and deploy our VMs on bare-metal AWS servers. Each of the
servers has two-socket Intel(R) Xeon(R) Platinum 8275CL
CPU @ 3.00GHz (48 cores in total) and 192 GB RAM, run-
ning Ubuntu 18.04 LTS. For each VM, we configured it with
two virtual CPU cores and 2GB RAM. While performing
kernel fuzzing, we set each of the fuzzers to run for 7
days. To utilize the computation resource of the AWS server
efficiently, we assign only 30 VMs for each server. In total, it
takes us two months to gather the experiment results shown
in this paper.

After 7 days of fuzz testing against various versions of
the Linux kernels by using four different fuzzers, we asked
the professional analyst team mentioned in Section 2.3 to
collect the fuzzing results (i.e., reports) from all VMs, group
the reports based on their title uniqueness, and eventually
preserve only the kernel reports truly tied to the 60 bugs
of our selection. Note that a kernel fuzzer might trigger
other kernel bugs and thus demonstrate errors. To ensure
the newly identified error behaviors are truly tied to the
bug of our interest, error triaging is needed.

As is illustrated in Figure 5, We combine automatic and
manual methods together to triage the newly generated bug
reports. If the selected bug has a patch, we will then patch
the kernel and run the new PoC. If this new PoC cannot

3. At the time of our experiment, 5.10 is the latest long-term support
Linux kernel version.

Y Y Y

NN

Bug report
Patch 
exists?

Manual triage

Fixed? Result

Automatic triage

Fig. 5: The procedure of dealing with new error report.

trigger the same error after patching, we assume the new
bug report or error behavior is also caused by the selected
bug. Otherwise, this new PoC might trigger another bug.
The rationale behind is that the patch can correctly fix the
underlying kernel bug, preventing the errors triggered by
the new PoC from occurring again. It is noteworthy that
the above process is fully automatic. However, if any issues
(e.g., reproduction failure, compilation issue) occur in the
above automation or the selected bug does not have a patch,
we will fall back to the manual triage procedure. The team
manually examines the bug patch and extracts the triggering
condition. With this triggering condition in hand, the team
further examines the execution of the PoC program. If the
execution aligns with the triggering condition, the team
safely concludes the newly discovered error is tied to the
bug of our interest. To minimize the possible human mis-
take, we ask the whole team to form a unanimous agreement
before we associate that new error behavior with the bug of
our interest.

Furthermore, we also asked our kernel professional ana-
lyst team to thoroughly and manually inspect whether there
are any other missing paths or contexts that could trigger
the kernel bugs and thus exhibit different error behaviors.
In this way, we can evaluate GREBE’s false negatives, in
other words, understand how complete GREBE could expose
a bug’s multiple error behaviors. Since the Linux kernel’s
codebase is huge and sophisticated given a kernel bug, it
usually requires extensive manual efforts and significant
expertise, spending hundreds of hours to perform through
manual analysis for exploring all the possible errors. As a
result, we evaluate the false negatives of GREBE by sampling
30% of the selected kernel bugs (18 out of 60 selected bugs).

6.2 Experiment Results

Effectiveness. Table 5 shows the sampled experiment re-
sults4. First, we can observe that our tool – GREBE could
demonstrate a significant advantage in finding a bug’s
multiple error behaviors. In comparison with Syzkaller and
Syzkaller variant, which discover a total of 9 additional error
behaviors for only 6 and 7 test cases within 7 days, GREBE
identifies 132 new error behaviors for 38 out of 60 test cases.
Second, we can observe the mutation optimization greatly
improves GREBE’s utility. In 7 days of our experiment,
GREBE without mutation optimization pinpoints 58 new
error behaviors for 27 cases and significantly outperforms
that of Syzkaller. However, GREBE without mutation opti-
mization still experiences more than 50% of a downgrade
in terms of the newly identified error behaviors (132 vs. 58)

4. It should be noted that, due to the space limit, we place the
complete experiment results at [40].
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SYZ ID Critical Structures Identified Initial Error Behavior Discovered New Error Behaviors
Time (in hours)

T1 T2 T3 T4

bdeea91 [37]
aead instance, crypto aead,

WARNING: refcount bug in crypto mod get
WARNING: refcount bug in crypto destroy tfm 6.69 2.62 0.06 1.25

crypto spawn, pcrypt instance ctx
crypto aead spawn, crypto type KASAN: use-after-free Read in crypto alg extsize - - - 83.69

5d3cce3 [25] napi struct, tun file general protection fault in hrtimer active
KASAN: use-after-free Read in free netdev - - 155.76 30.30

KASAN: use-after-free Read in netif napi add - - 77.41 9.08

521a764 [38] ax25 address, nr sock WARNING: refcount bug in nr insert socket

KASAN: use-after-free Read in release sock - - 0.03 4.39
KASAN: use-after-free Read in nr release - - - 20.00

KASAN: use-after-free Read in nr insert socket - - - 0.06
KASAN: use-after-free Write in nr insert socket - - - 126.82
KASAN: use-after-free Read in lock sock nested - - - 18.20

229e0b7 [39] delayed uprobe general protection fault in delayed uprobe remove

KASAN: use-after-free Read in delayed uprobe remove - - 3.83 6.66
KASAN: use-after-free Read in uprobe mmap - - 12.69 4.10

general protection fault in uprobe mmap - - - 89.49
KASAN: use-after-free Read in update ref ctr - - - 157.46

TABLE 5: The performance of Syzkaller, Syzkaller variant, GREBE and GREBE without mutation optimization under some
sampled kernel bugs. The “SYZ ID” column is the case ID. The “Critical Structures Identified” means the structures that are
identified by the static analysis tools then are utilized by GREBE. The “Initial Error Behavior” column indicates the error
behavior manifested in the corresponding bug report. The “Discovered New Error Behaviors” column is the error behaviors
newly discovered. Note that, for each case, we sample only some of its newly identified error behaviors for illustration
purposes. In the “Time” column, T1 represents the number of hours Syzkaller took, T2 is for Syzkaller’s variant, T3 is
for GREBE without optimization, and T4 stands for GREBE. The dash “-” means the corresponding error behavior is not
discovered by the corresponding tool.

and about 30% of decrease in terms of the cases it could
handle (38 vs. 27).

False Negatives. As is mentioned above, we also randomly
selected 30% of test cases, performed manual analysis, and
examined how complete GREBE could identify the error
behaviors of a given kernel bug. Our manual inspection
shows that GREBE misses one error behavior for the cases #

↪→ d1baeb1, #85fd017 and #695527b, and two error behaviors
for the case #d5222b3. To understand the reasons behind
these missing error behaviors, we explore the conditions of
triggering the missing error behaviors and found that, in
addition to finding different paths and contexts by using
GREBE, the exhibition of the missing behaviors also requires
the manipulation of memory layout. For case like #85fd017,
the manifestation of error behaviors depends on the layout
of memory. The undiscovered error behavior occurs only
if the memory in the overflowed region is unmapped. We
do not attribute this to the incompetency of GREBE. Rather,
we will leave the manipulation of thread interleaving and
memory layout as part of our future research.

Impact of Popular Kernel Structure Removal. Recall that in
Section 4.3, we rank the identified critical structures based
on their popularity and avoid using popular structures
to guide our kernel fuzzing. Intuition suggests this might
influence the effectiveness of our kernel fuzzing on finding a
bug’s multiple error behaviors. However, from the 60 kernel
bugs of our selection, we observe there are only 3 out of
60 test cases (5%) the root cause of which ties to popular
structures (sk_buff for #d1baeb1, nlattr for #b36d7e4 and #27

↪→ ae1ae). Even for these cases, GREBE still demonstrates its
utility in finding the bugs’ multiple error behaviors. These
observations well align with our aforementioned arguments
– ❶ the kernel bug generally roots in the inappropriate
usage of less popular kernel structures, and ❷ focusing on
less popular structures can still allow our fuzzer to reach
out to popular structures because of the strong dependence
between them. In Table 5, we list some kernel object types

that GREBE uses for fuzzing guidance. For more complete
kernel object types identified for each kernel bug, readers
could find them at [40].

Efficiency. Table 5 and the table at [40] show the time that
each fuzzer spent on finding a new kernel error behavior.
First, we observe that both Syzkaller and its variant have
comparable efficiency (21546 hours vs 21528 hours). How-
ever, GREBE without mutation optimization spends less
time than Syzkaller on identifying the new error behavior
(15011 vs. 21546 hours)5. After applying the mutation op-
timization, GREBE further reduces the time spent on new
error behavior identification (5445 vs. 15011 hours). This
discovery indicates mutation optimization alone provides
minimum benefits to the improvement of fuzzing efficiency
whereas object-driven component alone or the combination
of both brings significant improvement in fuzzing efficiency.

Second, we observe that GREBE succeeds in disclosing 79
new error behaviors for 32 test cases within 24 hours. Take
the case #5d3cce3 in Table 5 as an example. GREBE found
the use-after-free read error in netif_napi_add in 9 hours. On
the contrary, GREBE without mutation optimization spent
more than 3 days. The original Syzkaller and its variant
performed even worse, failing to find this error behav-
ior within the 7-day time window. This result empirically
shows that the design of object-driven fuzzing and mutation
optimization in GREBE, to a large extent, can save the time
and resources for the discovery of new error behaviors.

Contributing Factor Confirmation We manually analyze
the newly identified error behaviors and figure out the
effect of contributing factors. By manually inspecting the
reasons for new error reports, we can confirm 72.1% of
error behaviors are caused by input difference. And the
rest new error reports are caused by thread interleaving,

5. Since the new error behaviors discovered by Syzkaller and its
variant is too few compared with the other fuzzers, we conservatively
use 7 days (7×24=168 hours) to represent the non-discovered error
behaviors when computing the time.
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SYZ ID Exploitability Change SYZ ID Exploitability Change
d1baeb1 LL → L (2) ⋆ de28cb0 LL → L (5)
8eceaff LL → L (2) ⋆ f56bbe6 LL → L (1)
bb7fa48 LL → L (1) f0ec9a3 LL → L (1)
d767177 LL → L (2) 5d3cce3 LL → L (2) ⋆
460cc94 LL → L (1) 692a8c2 LL → L (12) ⋆
0df4c1a LL → L (3) 4cf5ee7 LL → L (2)
229e0b7 LL → L (3) 502c872 LL → L (1)
163388d LL → L (1) b36d7e4 LL → L (1)
bdeea91 LL → L (1) 1fd1d44 LL → L (1)
b9b37a7 LL → L (4) 695527b LL → L (1)
0d93140 LL → L (1) 85fd017 LL → L (4) ⋆
b0e30ab LL → L (1) 6a03985 LL → L (3) ⋆
d5222b3 LL → L (1) 575a090 LL → L (1)
3a6c997 L → L (10) 27ae1ae L → L (1)
cbb2898 L → L (1) 4bf11aa L → L (1)
e4be308 L → L (11) 7022420 L → L (1)
3b7409f L → L (1) ddaf58b L → L (2)

TABLE 6: The summary of exploitation potential improve-
ment. In the column of ”Exploitability Change”, LL means
the original error behavior is less likely to be exploitable.
The letter L means the newly discovered error behaviors
are likely to be exploitable. The number in the parenthesis
represents the amount of newly identified error behaviors
tied to probably exploitable. The star ⋆ denotes the bugs
for which we have developed exploits based on the newly
discovered error behaviors and their provided primitives.

memory dynamics, different sanitizers, inline function etc.
The confirmation demonstrates GREBE can effectively lever-
age input difference to explore multiple error behaviors of
kernel bugs.

6.3 Security Implication

Exploitation Potential Exploration. Recall that we design
GREBE to explore a kernel bug’s multiple error behaviors.
With the multiple manifested behaviors in hand, we expect
some newly exposed error behaviors to indicate a higher
exploitation potential for a kernel bug (e.g., finding an
out-of-bound write error behavior for a kernel bug that
originally manifests null pointer dereference).

In our dataset, we have 60 kernel bugs. The report of 44
bugs demonstrate less-likely-exploit behaviors, while other
16 bugs’ reports expose errors tied to likely-to-exploit. As we
can observe from Table 6, for 26 bugs (about 60% of 44 less-
likely-to-exploit bugs), GREBE could find at least one likely-
to-exploit error behavior which implies a higher exploitation
potential. This observation indicates that GREBE can help
security researchers better infer kernel bugs’ exploitation
potential.

By using GREBE, there are 8 bugs (50%) among the rest 16
kernel bugs originally tied to likely-to-exploit that manifest
other likely-to-exploit error behaviors indicating further ex-
ploitation potential. Taking a closer look at the three cases #

↪→ e4be308, #3b7409f, and #ddaf58b. Their original reports all
indicate that the bug provides the ability to perform a write
to an unauthorized memory region. However, the newly
discovered error behaviors enable the adversaries to per-
form unauthorized read/write at different memory regions.
Take the case #3619dec5 for example. Its new error behavior
can write data to the kmalloc-64 from 56th to 60th bytes,
whereas its error behavior shown in the report corrupts the

first eight bytes of kmalloc-64. This enlarged memory access
potentially diversifies the way to perform exploitation and
bypass mitigation.

For the kernel bugs of our selection that do not show
exploitation potential improvement (i. e., 26 bugs = 60-26-
8), we argue that this does not dilute the contribution
of GREBE. First, based on the aforementioned small-scale
evaluation on the false negatives of GREBE, it is very
likely that all the possible error behaviors of these bugs
are exposed. Second, although the exploitation potential
remains unchanged, GREBE manages to find many other
error behaviors (e.g., #1fd1d44 in the table at [40]). These
additional error behaviors and the corresponding fuzzing
programs can potentially facilitate the root cause diagnosis,
as is demonstrated in [7].

On average, for the selected bugs with only one error
report, GREBE could find other error behaviors for 51.7%
(10/29) of them. For the selected bugs with multiple error
reports, GREBE found more likely-to-exploit error behaviors
for 48.8% (20 out of 41) of them. This result shows GREBE
could help us find more error behaviors and thus explore
higher exploitation potential for kernel bugs.

Real-world Impact. For all the 44 kernel bugs (the original
reports of which implies less-likely-to-exploit), by using
GREBE, we can turn 26 of them from less-likely-to-exploit
bugs to likely-to-exploit ones. For the 26 kernel bugs, we fur-
ther explore their exploitability manually. We surprisingly
discovered that 6 out of the 26 bugs (illustrated by a star
sign in Table 6) could be turned into fully exploitable kernel
vulnerabilities. Take case #6a03985 as an example, its original
error behavior is a WARNING implying less-likely-to-exploit.
Using GREBE, we identified a use-after-free error behavior
for this bug. Starting from this newly discovered error
behavior and the primitive the error behavior provides, we
successfully demonstrated the bug’s exploitability, includ-
ing leaking sensitive data (e.g., encryption key and hashed
password), bypassing KASLR, and redirecting the kernel
execution for privilege escalation. Recently, we have shared
our working exploits with the corresponding vendors. Be-
cause the bug’s original report implies less-likely-to-exploit,
many vendors defer or completely ignore the adoption of
the patch. Upon receiving our exploitation demonstration,
they confirmed our findings, took immediate action to apply
patches, and assigned us with CVE IDs.

7 RELATED WORK

This section summarizes the works most relevant to ours.

Empirical Studies of Kernel Bugs. Researchers have per-
formed empirical studies of kernel bugs, with different
purposes compared to our paper. For example, Abal et al.
[12] have studied 42 bugs in the Linux kernel. They ob-
served that variability bugs do not exclusively belong to any
particular bug types, error-prone features, or source code lo-
cations, while the variability property has greatly increased
the complexity of bugs in the Linux kernel. PDiff [21]
performed a comprehensive study to understand the patch
presence testing problem. They identified two essential
challenges in the testing: third-party code customization
and diversities in the building configuration. Xu et al. [24]
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empirically studied real-world Android kernel vulnerabil-
ity patches. They found that the code changes of secu-
rity patches are generally small compared to non-security
patches and large security patches usually contain several
small individual patches. Li and Paxson [41] conducted
an empirical study of security patches to understand their
development life cycles. They show that security patches are
more localized (than other non-security patches) but usually
suffer from a long delay. Mu et al. [42] analyzed crowd-
reported vulnerability reports to assess their reproducibility.
Our work is the first to study the factors causing multiple
error behaviors for kernel bugs. In addition to the empirical
study, we also provide a fuzzing technique to explore all
possible error behaviors manifested by one bug.

Kernel fuzzing. Syzkaller [5] is a popular code-coverage-
based kernel fuzzer. While doing fuzzing, it leverages
templates to specify the dependency between system calls
and the expected value range of system calls’ arguments.
However, with only explicit dependencies between system
calls, it is not enough to produce a high-quality fuzzing
program because the OS kernel is a massive system with
a complicated internal state transition. IMF [43] optimizes
kernel fuzzing by tracking the system calls and analyzing
them coordinately with type information to infer the kernel
system’s internal states. This approach, unfortunately, has
the limitation of extracting internal dependencies inside
the kernel. As such, taking a step ahead, Moonshine [36]
leverages lightweight static analysis to detect internal de-
pendencies across different system calls from system call
traces of real-world programs. Recently, HFL [27] introduces
hybrid fuzzing to the kernel, performing point-to analysis,
and symbolic checking to figure out precise constraints
between system state variables. To support closed-source
kernel, instead of relying on the kernel interface to collect
code coverage, kAFL [6] proposes a fuzzing framework that
employs a hardware-assisted code coverage measurement.
Although the kernel fuzzers above demonstrate effective-
ness in finding kernel bugs, like Syzkaller, their design
inevitably fails multiple error behavior exploration simply
because they rely on code coverage to guide kernel fuzzing
tasks, making our task inefficient. In this work, GREBE
introduces a new design that utilizes critical kernel objects
to improve effectiveness and efficiency for multiple error
behavior exploration.

Apart from kernel fuzzers aiming to find various types
of bugs in the entire system, there are works focusing on
specific kernel modules or bug types. DIFUZE [44] uses
static analysis to effectively fuzz device drivers in the An-
droid kernel. Periscope [45] fuzzes a device driver not via
system call interfaces but by mutating input space over I/O
bus. Razzer [28] combines static and dynamic testing to
reach program sites where race condition bugs may exist.
KRACE [46] further customizes to find race condition bugs
in the file system. While they demonstrate their utility in
hunting bugs in specific kernel modules, it is difficult to
generalize these techniques to explore kernel bugs’ error
behaviors. SemFuzz [47] is the only work that aims to trigger
a known kernel bug through kernel fuzzing to the best of
our knowledge. However, this technique is not designed
to diversify the paths and contexts for triggering the bug

but simply to enable bug reproduction. Therefore, it is not
suitable for the problem we address.

Exploitability assessment. Automating exploit develop-
ment can also facilitate exploitability assessment. Existing
exploitability assessment works are mainly in three direc-
tions. The first direction is to obtain exploitable primitives.
Xu et al. [48] exploit use-after-free vulnerabilities using two
memory collision mechanisms to perform heap spray in the
kernel. SLAKE [49] facilitates the exploitation of slab-based
vulnerabilities by first building a database of kernel objects
and then systematically manipulating slab layout using
the kernel objects in the database. Lu et al. [50] exploits
use-before-initialization vulnerabilities using deterministic
stack spraying and reliable exhaustive memory spraying.
As a follow-up work, Cho et al. [51] further propose to
use BPF functionality in the kernel for stack spraying. The
second direction is to bypass mitigations in the kernel. For
example, ret2dir [52] takes advantage of physical memory
which is mapped to kernel space for payload injection.
KEPLER [53] leverages communication channels between
kernel space and user space (e.g., copy_from/to_user) to
leak stack canary and inject ROP payload to kernel stack.
ELOISE [34] bypasses KASLR and heap cookie protectors
using a special but pervasive type of structure. The third
direction is to explore the capability of vulnerabilities, which
is most related to our work. In this direction, FUZE [54]
explores new use sites for use-after-free vulnerabilities using
under-context fuzzing and identifies exploitable primitives
implied by the new use sites using symbolic execution.
KOOBE [55] extracts capabilities of a slab-out-of-bound
access vulnerability manifested in the PoC program and un-
covers hidden capabilities using capability-guided fuzzing.
The techniques developed in both works are customized
to the characteristics of a specific vulnerability type and
are difficult to generalize to others. Besides, they require to
manually diagnose root cause of the bug while GREBE does
not. Moreover, they cannot explore possible error behaviors
for a single bug, which is the main contribution of GREBE.

8 CONCLUSION AND FUTURE WORK

With only the error behavior in a bug report, security
analysts might underestimate the severity of the underlying
kernel bug, since the bug could manifest multiple error
behaviors indicating different exploitability. Therefore, we
explore multiple error behaviors of the same bug to correctly
assess the exploitability. Through an empirical study, we dis-
cover the prevalence of multiple error behaviors and more
error behaviors help unveil the real exploitability. Through
intensive manual analysis, we identify the factors contribut-
ing to multiple error behaviors with different exploitation
potentials. Under the guidance of our empirical study, we
design an object-driven kernel fuzzing mechanism. With our
proposed technique, security analysts could explore more
error behaviors of kernel bugs. The newly identified error
behaviors might have higher exploitation potential than the
one shown in the original report. It indicates the bug’s
exploitability escalation. As such, we safely conclude, given
a kernel bug, the object-driven kernel fuzzing method could
leverage the contributing factors and help security analysts
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better understand and infer exploitability for a given kernel
bug.

Our future work will focus on other contributing factors
to expose more error behaviors. For thread interleaving, we
will extract some representative information of underlying
kernel bugs (e.g., shared resources, synchronization vari-
ables). Motivated by the utility of the object-driven fuzzing
approach, we would design a directed fuzzing mechanism
that helps expose multiple error behaviors caused by the
same thread interleaving. At the same time, we will mainly
explore the proposed method against the bugs on other
kernels (e.g., XNU, FreeBSD).
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