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Abstract—With the emergence of hardware-assisted processor tracing,
execution traces can be logged with lower runtime overhead and inte-
grated into the core dump. In comparison with an ordinary core dump,
such a new post-crash artifact provides software developers and security
analysts with more clues to a program crash. However, existing works
only rely on the resolved runtime information, which leads to the limitation
in data flow recovery within long execution traces.

In this work, we propose POMP++, an automated tool to facilitate the
analysis of post-crash artifacts. More specifically, POMP++ introduces a
reverse execution mechanism to construct the data flow that a program
followed prior to its crash. Furthermore, POMP++ utilizes Value-set
Analysis, which helps to verify memory alias relation, to improve the
ability of data flow recovery. With the restored data flow, POMP++ then
performs backward taint analysis and highlights program statements that
actually contribute to the crash.

We have implemented POMP++ for Linux system on x86-32 platform,
and tested it against various crashes resulting from 31 distinct real-world
security vulnerabilities. The evaluation shows that, our work can pinpoint
the root causes in 29 cases, increase the number of recovered memory
addresses by 12% and reduce the execution time by 60% compared with
existing reverse execution. In short, POMP++ can accurately and efficiently
pinpoint program statements that truly contribute to the crashes, making
failure diagnosis significantly convenient.

Index Terms—Postmortem Program Diagnosis, Failure Diagnosis, Re-
verse Execution, Value-set Analysis.

1 INTRODUCTION

DUE to the increasing complexity of functionality, software
systems inevitably contain defects despite developers’ best

efforts. When these defects are triggered, a program typically
crashes and terminates abnormally. Vendors of modern software
systems can receive millions of crash reports every day [2, 3]. This
practice highly motivates the techniques of efficient and accurate
postmortem program diagnosis.

Briefly speaking, postmortem program diagnosis is to identify
the program statements pertaining to the crash, analyze these
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statements, and eventually figure out why a bad value was passed
to the crash site. Of all the techniques in postmortem program
diagnosis, record-and-replay [4–6] and core dump analysis [2, 7, 8]
are the most effective solutions but still suffer from their essential
limitations. Compared with record-and-replay which requires high-
overhead program instrumentation, core dump analysis is more
lightweight and promising. However, the core dump provides only
a snapshot of the failure, from which people can only infer partial
control and data flows pertaining to program crashes.

Recently, advances in hardware-assisted processor tracing
significantly have ameliorated this situation. With the emergence
of Intel PT [9] – a new hardware feature in Intel CPUs – software
developers and security analysts can trace executed instructions
and save them in a circular buffer. When a crash occurs, the
operating system includes the trace into a core dump. Since this
post-crash artifact contains both the state of crashing memory and
the execution history, software developers not only can inspect the
program state at the time of the crash, but also fully reconstruct the
control flow that led to the crash, making software debugging more
informative and efficient. However, it is still time and resource
consuming to diagnose the root causes of software failures with PT
trace, because such a post-craft artifact typically contains too many
instructions to be examined manually.

To address this problem, many solutions have been proposed
[1, 10]. Our earlier version POMP [1] is an automatic root cause
analysis tool, which reconstructs a data flow based on PT trace
and coredump. During data flow recovery, when there is a need
to resolve memory aliases, it recursively runs hypothesis testing
(HT) which makes assumptions about the alias relations and reject
the wrong assumptions according to run-time information. Another
recently proposed technique REPT [10] reconstructs the execution
states by combining online PT tracing and offline binary analysis.
It performs forward/backward analysis iteratively based on memory
dump and applies an error correction scheme to resolve conflicts
during reverse execution.

Nevertheless, we recognize that the existing works share
common shortcomings that limit their use in practice. On the
one hand, most of the previous works only rely on run-time
information. Once such information is not sufficiently recovered,
the postmortem analysis may not proceed further and miss the
root cause of crashes. On the other hand, the existing works have
limited analysis efficiency. For instance, POMP handles missing
memory writes by running hypothesis tests recursively, incurring
exponential computation complexity. This low efficiency makes
POMP impractical to handle millions of crash reports on a daily
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basis.
In this work, we propose POMP++, a system to address the

above limitations in analyzing a post-crash artifact and pinpointing
statements pertaining to the crash. We augment POMP with Value-
set Analysis (VSA) [11], the most effective and efficient alias
analysis at the binary code level [12]. The intuition behind is that
static analysis can facilitate the understanding of alias relations.
Technically speaking, we pre-perform a customized version of
VSA to obtain the address set of each memory access. When
encountering an uncertain alias during reverse execution, we query
VSA results for answers. Accordingly, we introduce the improving
scheme of reverse execution based on VSA and hypothesis testing,
detailed in Section 4. With the VSA-enhanced data flow recovery,
we finally utilize backward taint analysis to pinpoint the critical
instructions leading up to the crash.

The novelty of this work lies in two aspects. First, we propose
a new VSA-based approach for memory alias verification. As the
original VSA is designed to analyze an entire binary, we customize
the VSA algorithms to support the straight-line trace carried by
a post-crash artifact. In particular, we introduce new schemes
to identify memory regions and we develop solutions to handle
traces that have incomplete contexts. More details are presented
in Section 4. Second, we develop new schemes to incorporate our
customized VSA to POMP. The goal is to achieve bi-directional
feedback so that VSA gets improved with information recovered by
reverse execution and in turn aids the alias verification of reverse
execution. Accordingly, we introduce two new hybrid schemes.
As we will demonstrate in Section 6, our design with the hybrid
schemes significantly improves the recovery of data flow, leading
to better root cause identification. Moreover, as a large amount of
hypothesis tests are replaced by VSA queries, POMP++ achieves
superior efficiency compared with POMP.

In summary, this paper makes the following contributions.
• We design POMP++, a new technique that analyzes post-crash

artifacts by reversely executing instructions residing in the
post-crash artifact.

• We develop a VSA-enhanced reverse execution scheme to
enable almost constant utilities especially when reversely
executing long instruction trace.

• We implement POMP++ in 32-bit Linux to facilitate the job
of software developers and security analysts when pinpointing
software defects.

• We evaluate POMP++ on 31 distinct real-world security vulner-
abilities, and compare with POMP. With better identification
of root causes, 12% of data flow recovery improvement, and
60% of efficiency improvement, we demonstrate that VSA
can facilitate postmortem program diagnosis.

The rest of this paper is organized as follows. Section 2
describes the threat model of our research. Section 3 presents
a high-level work flow of POMP++. Section 4 and 5 describe
the design and implementation of POMP++ in detail. Section 6
evaluates the utility of POMP++. Section 7 summarizes the related
work followed by some discussions on POMP++ in Section 8.
Finally, we conclude this work in Section 9.

Compared with the earlier version [1], our work has many
differences in almost all sections. With static analysis, we addi-
tionally work on how to extend utilities of reverse execution while
improving the time efficiency in the context of postmortem program
diagnosis. Note that the time efficiency really matters when faced
with tremendous amounts of software crashes. Thus, we propose
our new approaches with VSA, which is described briefly in

1 typedef struct A {
2 int t;
3 void (*func)(void);
4 }SA;
5
6 void test(){
7 ......
8 }
9
10 int child(int *a) {
11 a[0] = a;
12 a[1] = 0x0;
13 return 0;
14 }
15
16 int main() {
17 SA *p = (SA *)malloc(sizeof(SA));
18 p->func = test;
19 child(&(p->t));
20 (p->func)(); // crash site
21 }

Fig. 1. A toy example with a heap overflow defect.

Section 3 and detailed its customization, calculation and application
to alias verification in Section 4. We then correspondingly introduce
its extra implementation in Section 5 and make comparison with
the earlier version [1] in Section 6.

2 THREAT MODEL

In this work, we focus on diagnosing the crash of a process. As
a result, we exclude the program crashes that do not incur the
unexpected termination of a running process (e.g., Java program
crashes). Since this work diagnoses a process crash by analyzing a
post-crash artifact, we further exclude those process crashes that
typically do not produce an artifact.

A post-crash artifact contains not only the memory snapshot
of a crashing program but also the instructions that the program
followed prior to its crash1. Aiming to determine instructions that
actually pertain to the crash, we assume a post-crash artifact carries
all the instructions that actually contribute to the crash. We believe
this is a realistic assumption because a software defect is typically
close to a crash site [13–15] and the operating system can easily
allocate a memory cell to store the execution trace from a defect
triggered to an actual crash. It should be noted that we do not
assume the source code of the crashing program is available.

3 DESIGN GOAL AND APPROACHES

In this section, we describe the objective of our research. We
then give a demonstrative example to illustrate our basic idea and
high-level work flow of how POMP++ performs reverse execution,
Value-set Analysis and root cause pinpointing.

3.1 Objective
The goal of software failure diagnosis is to identify the root cause
of a failure from the instructions enclosed in an execution trace.
Due to the enormous number of instructions in the trace, software
developers’ digging for the root cause is tough and time-consuming.

1. While Intel PT does not log unconditional jumps and linear code, a full
execution trace can be easily reconstructed from the execution trace enclosed in a
post-crash artifact. By an execution trace in a post-crash artifact, without further
specification, we mean a trace including conditional branch, unconditional jump
and linear code.
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A1 : push ebp
A2 : mov ebp, esp
A3 : sub esp, 0x14
A4 : call malloc
A5 : mov [ebp-0xc], eax
A6 : mov [eax+0x4], test
A7 : push eax
A8 : call child
A9 : push ebp
A10: mov ebp, esp
A11: mov eax, [ebp+0x8]
A12: mov [eax], eax ;a[0]=a
A13: add eax, 0x4
A14: mov [eax], 0x0 ;a[1]=0
A15: mov eax, 0x0
A16: pop ebp
A17: ret
A18: add esp, 0x4
A19: mov eax, [ebp-0xc] 
A20: add eax, 0x4
A21: call [eax] ;crash site

Time

T21 T20 T19 T18 T17 T16 T15 T14 T13 T12
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gi

st
er eax 0x9804 0x9800 0x9800 0x0 0x0 0x0 0x0 0x9804 0x9804 0x9800

ebp 0xff28 0xff28 0xff28 0xff28 0xff28 0xff28 0xff08 0xff08 0xff08 0xff08

esp 0xff10 0xff14 0xff14 0xff14 0xff10 0xff0c 0xff08 0xff08 0xff08 0xff08
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dr

es
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0xff14 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

0xff10 0x9800 0x9800 0x9800 0x9800 0x9800 0x9800 0x9800 0x9800 0x9800 0x9800

0xff0c A18 A18 A18 A18 A18 A18 A18 A18 A18 A18
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Fig. 2. A post-crash artifact along with the execution state recovered by reversely executing the trace enclosed in the artifact. Note that, for simplicity,
all the memory addresses and the value in registers are trimmed and represented with two hex digits. Note that A18 and test indicate the addresses
at which the instruction and function are stored.

With our VSA-enhanced reverse execution technique, we want to
pinpoint the minimal set of instructions that contribute to the crash,
making postmortem program analysis significantly easier.

3.2 Reverse Execution
With Intel PT, the instruction trace prior to the crash is available for
reverse execution. To illustrate the method and challenges during
the reverse execution, we take the code in Figure 1 as an example
to show the process of recovering the execution state with the
recorded execution trace.

The program in Figure 1 crashes at line 20, caused by an
overflow that occurs at line 12. After the crash, an execution
trace is left behind in a post-crash artifact shown in Figure 2. In
addition to the trace, the artifact captures the state of the crashing
memory which is illustrated as the values shown in column T21.

When a software developer or security analyst begins to follow
through the execution trace reversely from the crash, he will be
prematurely blocked at instruction A19 because mov overwrites
register eax and an inverse operation against such instruction lacks
information to restore its previous value. To solve this problem
and continue backtracking, we construct a data flow based on a
use-define chain to perform forward analysis. We will detail the
forward analysis in Section 4. Then, we can easily observe that
instruction A15 specifies the definition of register eax, and that
definition can reach instruction A19 without any other intervening
definitions. As a result, we can restore the value in register eax
and thus complete the inverse operation for instruction A19.

For arithmetical instructions like A18, it is easy to recover
the prior memory footprints by doing inverted computation. For
complex instructions such as A17, we can treat them as mov eip,
[esp] and then add esp, 0x4, and complete the reverse
operations. Following these instinctive reversal rules, the reverse
execution can further restore memory footprints.

However, when backward analysis reaches instruction A14,
through forward analysis, we can discover that the value in register
eax after the execution of A14 is dependent upon both instruction
A11 and A13. As we then need to retrieve the value stored in

the memory region specified by [ebp+0x8] shown in instruction
A11, we are confronted with the problem that the memory indicated
by [ebp+0x8] might be overwritten by [eax] in instruction
A12 and/or [eax] in instruction A14, as they might be different
symbolic names that access data in the same memory location
(i. e., alias).

To address this issue, POMP employs hypothesis testing (HT)
to verify possible memory alias relations. To be specific, POMP
makes two hypotheses, one assuming two symbolic names are
aliases of each other while the other assuming the opposite. Then,
it tests each of these hypotheses by emulating inverse operations
for instructions. Let’s continue the example to verify alias relation
between [ebp+0x08] in A11 and [eax] in A14. For the first
hypothesis that they are aliases, after the inverse operation for
instruction A15, the information carried by the memory footprint
at T14 will have three constraints, including eax = ebp + 0x8,
eax = [ebp + 0x8] + 0x4 and [eax] = 0. For the opposite
hypothesis, the constraint set will include eax 6= ebp + 0x8,
eax = [ebp + 0x8] + 0x4 and [eax] = 0. By looking at the
memory footprint at T14 and examining these two constraint sets,
reverse execution can easily reject the first hypothesis and accept
the second because constraint eax = ebp + 0x8 for the first
hypothesis does not hold.

However, when it comes to the alias relation between
[ebp+0x08] in A11 and [eax] in A12, HT cannot make a
conclusion because it does not have sufficient information to find
any conflict. In order to solve this problem, we introduce static
analysis (i. e., Value-set Analysis) [11] to POMP. In the following,
we describe how Value-set Analysis helps determine the above
alias relation.

3.3 Value-set Analysis for Alias Verification
Over the past decades, there have been many works proposed to
perform alias analysis at the binary code level [16–18]. Regarded
as the most effective and efficient technique [12], Value-set
Analysis purely relies on static information in the binary and
such information rarely reduces as the trace becomes longer.
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Before After

... ... ...

A19 def: eax = [ebp-0xc] 0x9800

A19 use: eax ??

A19 use: [ebp-0xc] 0x9800

A19 use: ebp 0xff28

A18 def: esp = esp+4 0xff14

A18 use: esp 0xff10

... ... ...

A19 def: eax = [ebp-0xc] 0x9800

A19 use: eax ??

A19 use: [ebp-0xc] 0x9800

A19 use: ebp 0xff28

Fig. 3. A use-define chain before and after appending new relations
derived from instruction A18. Each node is partitioned into three cells.
From left to right, the cells carry instruction ID, definition (or use)
specification and the value of the variable. Note that symbol ?? indicates
the value of that variable is unknown.

Based on the observed patterns that memory layout generally
follows, VSA partitions memory into several disjoint memory
regions, such as stack, heap, and global, and assigns memory
accesses to the regions accordingly. For some memory accesses,
VSA achieves region assignment by examining the semantics of the
instructions. For others, VSA performs forward data flow analysis
to determine the regions conservatively.

Observing the region division, we can easily address the
aforementioned alias relation between [ebp+0x08] in A11 and
[eax] in A12 in Figure 2. Inferred from the specification of
malloc function in A4, the return value, i. e., eax register is
a pointer to the allocated heap area. Therefore, the value of eax
in A5 and A6 are all linked to heap region. Inferred from the
semantices of A5, [ebp-0xc] points to the heap region. Furthermore,
when [ebp-0xc] in A5 is transmitted to [ebp+0x8] in A11
without any intervening definitions, [eax] in A12 points to the
heap region as well. Meanwhile, based on the frame pointer ebp,
[ebp+0x8] in A11 is an access to the stack region, which
indicates that it cannot be an alias of [eax] in A12.

Besides the division in memory region, VSA also calculates
an over-approximation of the set of addresses on which memory
accesses span. With the results given by VSA, we can narrow down
the range of aliases to be verified and significantly facilitate reverse
execution. In this way, we design POMP++ with VSA to assist
memory alias verification. The details of VSA computation and
POMP++ will be presented in Section 4.

3.4 Root Cause Pinpointing
After the recovery of memory footprints shown in Figure 2,
software developers and security analysts can easily derive the
corresponding data flow and thus pinpoint instructions that truly
contribute to a crash. In our work, POMP++ automates this
procedure by using backward taint analysis. By examining the
memory footprints restored, POMP++ can easily find out that the
memory indicated by [eax] in instruction A21 shares the same
address with that indicated by [eax] in instruction A14. This
implies that the bad value is actually propagated from instruction
A14. As such, POMP++ highlights instructions A21 and A14, and
deems they are truly attributable to the crash. More details about
the backward taint analysis are shown in Section 4.

4 DESIGN

In this section, we present the design of POMP++. We first describe
how we customize Value-set Analysis on the execution trace. Then,

we elaborate on the core algorithm to perform reverse execution
and memory footprint recovery. Finally, we explain some design
details about the backward taint analysis which helps to pinpoint
instructions truly contributing to the crash.

4.1 Value-set Analysis Customization
As a static analysis for binary code, VSA can be performed prior
to reverse execution. In our problem settings, there are several
challenges to maximize the utility of VSA. First, the existing VSA
solutions lack schemes for the identification of many memory
regions. We develop new schemes understand memory regions
according to the patterns of instruction sequences. Second, the
original VSA is designed to analyze an entire binary other than a
straight-line execution trace. As handling a single trace has much
lower complexity and leads to better accuracy, we customize the
VSA algorithms to support the straight-line trace carried by a post-
crash artifact. Third, we leverage the recovered information from
reverse execution to maximize the utility of VSA. In the following,
we detail the details of our designs.

4.1.1 Memory Regions Identification
Compilers often generate code that uses different patterns to
access different memory regions. This gives us the foundation
to infer region information — we seek those patterns from the
instruction trace and map them into region information. As we
mentioned in Section 3, for Stack and Heap regions, we rely on the
stack frame pointer and heap-based dynamic allocation functions,
respectively. In addition to those patterns in original VSA [11], we
also summarize some new ones in the single trace as follows.

Global variables. In position dependent code, global variables
hard-code their addresses in instructions, which can be easily
determined.

1 call get_pc_thunk.cx ;mov PC to ebx
2 add ebx, 0x11b0 ;get locations of GOT
3 mov eax, [ebx-0x10] ;get address from entry
4 mov eax, [eax] ;access global variable

In position independent code (PIC) [19], global variables are
accessed with reference to Program Counter (PC) and the Global
Offset Table (GOT). We use the above example as an illustration.
The code first retrieves PC with a special function (get_pc_-
thunk.cx). Then, it adds a constant value to PC, obtaining the
location of the GOT. Finally, the last two instructions locate and
access the global variable, respectively. This access pattern is
generally unique to determine global variables.

Static variables and TLS variables. In position dependent
code, static variables also hard-code their addresses in instructions,
and TLS variables use a special register( e.g., gs in x86-32)
as base address. Both of these two cases are identifiable without
difficulties. In PIC code, static variables are located using PC and
TLS variables are accessed with PC, GOT, and the aforementioned
special register. These accesses are also separable from accesses to
other regions.

Special functions. Going beyond the patterns above, we
include an additional strategy to determine three types of functions
that only access particular regions:

• Functions that perform no memory modification or only write
to its own stack (e.g., getchar).

• Functions that only make changes to its own stack and TLS
variables (e.g., lseek).
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TABLE 1
A demonstrative example indicating value-set analysis with respect to its

capability of performing alias analysis.

Index A-loc Value-set
A1 esp (⊥, [-0x4, -0x4], ⊥)
A2 ebp (⊥, [-0x4, -0x4], ⊥)
A3 esp (⊥, [-0x18, -0x18], ⊥)

A5 [ebp-0xc](⊥, [-0x10, -0x10], ⊥) (⊥, ⊥, [0x0, 0x0])
eax (⊥, ⊥, [0x0, 0x0])

A6 [eax+0x4](⊥, ⊥, [0x4, 0x4]) ([test, test], ⊥, ⊥)

A7 esp (⊥, [-0x1c, -0x1c], ⊥)
[esp](⊥, [-0x1c, -0x1c]), ⊥) (⊥, ⊥, [0x0, 0x0])

A8 esp (⊥, [-0x20, -0x20], ⊥)
[esp](⊥, [-0x20, -0x20], ⊥) ([A18, A18], ⊥, ⊥)

A9 esp (⊥, [-0x24, -0x24], ⊥)
[esp](⊥, [-0x24, -0x24], ⊥) (⊥, [-0x4, -0x4], ⊥)

A10 ebp (⊥, [-0x24, -0x24], ⊥)

A11 [ebp+0x8](⊥, [-0x1c, -0x1c], ⊥) (⊥, ⊥, [0x0, 0x0])
eax (⊥, ⊥, [0x0, 0x0])

A12 eax (⊥, ⊥, [0x0, 0x0])
[eax](⊥, ⊥, [0x0, 0x0]) (⊥, ⊥, [0x0, 0x0])

A13 eax (⊥, ⊥, [0x0, 0x0])
A14 [eax](⊥, ⊥, [0x4, 0x4]) ([0x0, 0x0], ⊥, ⊥)
A15 eax ([0x0, 0x0], ⊥, ⊥)

A16 ebp (⊥, [-0x4, -0x4], ⊥)
esp (⊥, [-0x20, -0x20], ⊥)

A17 esp (⊥, [-0x1c, -0x1c], ⊥)
A18 esp (⊥, [-0x18, -0x18], ⊥)

A19 [ebp-0xc](⊥, [-0x10, -0x10], ⊥) (⊥, ⊥, [0x0, 0x0])
eax (⊥, ⊥, [0x0, 0x0])

A20 eax (⊥, ⊥, [0x4, 0x4])
A21 [eax](⊥, ⊥, [0x4, 0x4]) ([0x0, 0x0], ⊥, ⊥)

• Functions that only write memory in its own stack, TLS
variables, and meta-data regions (e.g., malloc).

For any memory access operated by these functions, we can,
therefore, immediately determine the potential region(s).

4.1.2 Value-set Analysis for single trace
After memory regions are identified, we also customize the
approach to assign the corresponding value sets to memory accesses
and propagate them through execution trace. As execution trace
specifies one path in the control flow graph (CFG), it can avoid
the problem that all successors of indirect jumps and indirect calls
cannot be identified in the original VSA implementation. Thus, we
introduce how to do Value-set Analysis on a single trace.

VSA tracks down variable-like entities referred to as a-locs. By
convention, an a-loc could be a register, a memory cell on the stack,
on the heap, or in the global region. Particularly, VSA represents a
memory a-loc as a combination of the value held by that memory
cell and the value set indicating the address of that memory cell,
as is shown in Table 1. For example, for A5: mov [ebp-0xc],
eax, VSA specifies its corresponding a-loc as [ebp-0xc](⊥,
[-0x10, -0x10], ⊥). Here, [ebp-0xc] indicates the name of the
stack memory cell, and (⊥, [-0x10, -0x10], ⊥) is the value set of
the memory address.

For each a-loc identified, VSA computes a value set, indicating
the set of values that each a-loc could potentially equal to. By
convention, VSA represents such a value set as a n-tuple pertaining
to n regions partitioned. For each element in the tuple, VSA
specifies a range of offsets which indicates the values that the
a-loc may equal to with respect to the corresponding region. To
illustrate this, we take the register a-loc esp as an example. As
depicted in Table 1 line 1, VSA specifies its value set as a 3-
tuple (global 7→ ⊥, stack 7→ [-0x4, -0x4], heap
7→ ⊥), for brevity (⊥, [-0x4, -0x4], ⊥). In this set, ⊥ is a symbol –
denoting the empty set of offsets (i. e., ∅) – reflecting the fact that
the register esp cannot refer to any memory cells on the heap or

global region. Since instruction push offsets esp by 4 from the
starting point of the stack, VSA assigns the value set [-0x4, -0x4]
to the register a-loc esp, and attaches this set to the stack. Value
sets are propagated with the following instruction trace in such an
instinctive arithmetical way.

We assume that code in Figure 2 represents the complete
execution trace of a program and draw Table 1 to indicate the
value set tied to each of the a-locs identified from the assembly
code. With this table, we then perform memory alias analysis by
examining all of the value sets of addresses attached to memory
a-locs. We can easily observe that memory [eax] at A14 and
[eax] at A21 are the only pair of memory aliases pertaining to
the execution trace. This is simply because the a-locs tied to these
two memory segments are the only pair that carries the overlapping
value set corresponding to their addresses, i. e., (⊥, ⊥, [0x4, 0x4]).

In the above example, VSA exhibits perfect performance in
alias analysis. However, this does not imply that VSA could per-
fectly resolve the memory alias issue in the context of postmortem
program analysis. Generally, the execution trace logged for failure
diagnosis has a limited length, indicating only a partial execution
chronology prior to a program crash. The incomplete trace directly
leads to the potentially imprecise data flow in VSA.

To address the above problem, we ensure that the instruction
trace covers the function entry. Considering that there may exist
multiple paths from the entry to the trace beginning and we have no
idea of the exact path, we conservatively consider all possibilities
- we propagate the value sets along all possible paths from the
entry to the trace beginning. This guarantees a sound result. In the
example shown in Figure 2, there is a single path from the entry
to the trace beginning. Therefore, we can easily reconstruct the
full path and obtain a better data flow. Note that we follow the
original VSA to perform inter-procedure analysis if the extended
instructions contain function calls.

4.2 Reverse Execution

Here, we describe the algorithm that POMP++ follows when
performing reverse execution. In particular, our algorithm follows
two steps – use-define chain construction and memory alias
verification. In the following, we elaborate on them in turn.

4.2.1 Use-Define Chain Construction
In the first step, the algorithm first parses an execution trace
reversely. For each instruction in the trace, it extracts uses and
definitions of corresponding variables based on the semantics
of that instruction and then links them to a use-define chain
previously constructed. For example, given an initial use-define
chain derived from instructions A21-A19, POMP++ extracts the
uses and definitions from instruction A18 and links them to the
head of the chain (see Figure 3).

As is shown in the figure, a definition (or use) includes three
elements – instruction ID, use (or definition) specification and the
value of the variable. In addition, we can observe that a use-define
relation includes not only the relations between operands but also
those between operands and those base and index registers enclosed
(see the use and definition for instruction A19 shown in Figure 3).

Every time appending a use (or definition), our algorithm
examines the reachability for the corresponding variable and
attempts to resolve those variables on the chain. More specifically,
it checks each use and definition on the chain and determines if the
value of the corresponding variable can be resolved. By resolving,
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A10 def: ebp 0xff08

A10 use: ebp ??

A10 use:esp 0xff08

A9 def: [esp] ??

A9 use: [esp] ??

A9 use: esp 0xff08

A9 use: ebp ??

A9 def: esp 0xff08

A9 use: esp 0xff0c

... ... ...

A11 use: ebp 0xff08

✘

A11 use: [ebp+0x8] ??

A11 def: eax ??

A12 use: eax ??

A12 use: [eax] ??

A12 def: [eax] ??

A13 use: eax ??

A13 def: eax ??

A14 use: eax ??

A14 use: [eax] ??

A14 def: [eax] 0x0

A11 use: eax ??

Fig. 4. A use-define chain with one intervening tag conservatively placed.
The tag blocks the propagation of some data flows. Note that 7 represents
the block of a data flow.

we mean the variable satisfies one of the following conditions –
(1) the definition (or use) of that variable can reach the end of the
chain without any other intervening definitions; (2) it can reach its
consecutive use in which the value of the corresponding variable is
available; (3) a corresponding resolved definition at the front can
reach the use of that variable; (4) the value of that variable can be
directly derived from the semantics of that instruction (e.g., variable
eax is equal to 0x00 for instruction mov eax, 0x00).

To illustrate this, we take the example shown in Figure 3.
After our algorithm concatenates definition def:esp=esp+4
to the chain, where most variables have already been resolved,
reachability examination indicates this definition can reach the
end of the chain. Thus, the algorithm retrieves the value from
the post-crash artifact and assigns it to esp (see the value in
circle). After this assignment, our algorithm further propagates
this updated definition through the chain, and attempts to use the
update to resolve variables, the values of which have not yet been
assigned. In this case, our algorithm further appends use:esp
whose variable esp is not resolvable through the aforementioned
reachability examination. Therefore, our algorithm derives the value
of esp from the semantics of instruction A18 (i. e., esp=esp-4).

During use-define chain construction, our algorithm also keeps
track of constraints in two ways. In one way, our algorithm extracts
constraints by examining instruction semantics. In another way, our
algorithm extracts constraints by examining use-define relations.
In particular, (1) when the definition of a variable can reach its
consecutive use without intervening definitions, our algorithm
extracts a constraint indicating the variable in that definition
shares the same value with the variable in the use. (2) When two
consecutive uses of a variable encounter no definition in between,
our algorithm extracts a constraint indicating variables in both uses
carry the same value. (3) With a variable resolved, our algorithm
extracts a constraint indicating that variable equals to the resolved
value. The reason behind the maintenance of these constraints is
to be able to perform memory alias verification discussed in the
following section.

In the process of resolving variables and propagating definitions
(or uses), our algorithm typically encounters a situation where an
instruction attempts to assign a value to a variable represented by a
memory cell but the address of that region cannot be resolved by
using the information on the chain. For example, instruction A14
shown in Figure 2 represents a memory write, the address of which
is indicated by register eax. From the use-define chain pertaining
to this example shown in Figure 4, we can easily observe the node

with A13 def:eax does not carry any value though its impact
can be propagated to the node with A14 def:[eax] without
any other intervening definitions.

When this situation appears, a definition like A14
def:[eax] may potentially interrupt the reachability of the
definitions and uses of other variables represented by memory
accesses. For example, as is described in Section 3 that memory
indicated by [ebp+0x08] and [eax] might be an alias of each
other, definition A14 def:[eax] may block the reachability
of A11 use:[ebp+0x08]. As such, in the step of use-define
chain construction, our algorithm treats those unknown memory
writes as an intervening tag and blocks previous definitions and
uses accordingly. This conservative design strategy ensures that our
algorithm does not introduce errors to memory footprint recovery.
Note that once such intervening tags are resolved by our alias
verification (which will be shortly explained), we will re-construct
the blocked use-def chains.

In addition, during the execution of a program, it may invoke a
system call, which traps execution into kernel space. As we will
discuss later, we do not trace execution in the kernel space. In order
to remedy the loss of such execution trace, we study the influences
that system calls have on the user space and deal with them in
a different manner. And a majority of system calls do not incur
modification to registers and memory in user space and need no
attention. If system calls may influence registers holding a value for
a crashing program, our algorithm simply introduces definitions on
the use-define chain. For system calls that can manipulate memory
cells in the user space, our algorithm identifies the memory area
influenced by that system call. Due to the calling convention of
system calls on Linux, the affected memory area depends on the
arguments of system calls or some specific registers. Thus, if our
algorithm identifies the size of that memory region, it will append
definitions to the chain accordingly. Otherwise, our algorithm treats
that system call as an intervening tag which blocks the propagation.

The above forward-and-backward analysis is mainly designed
to discover the use-define relations. Other techniques, such as static
program slicing [20], can also identify use-define relations. How-
ever, our analysis is novel. To be specific, our analysis discovers
the use-define relations and use them to perform the restoration
of memory footprints. In turn, it leverages recovered memory
footprints to further find use-define relations. This interleaving
approach leads more use-define relations to being identified. More
details about how we resolve memory alias are presented in the
next section.

4.2.2 Memory Alias Verification
The second step of our algorithm is to minimize the side effect of
memory aliases, i. e., to examine if there exists any overlapping
between the memory areas that a pair of symbolic names points to.

We have described the method of hypothesis testing in Section 3.
During the process, the use-define chain is changed according
to the hypothesis and the newly propagated data flow comes
with two types of conflicts. The example of [ebp+0x08] in
A11 and [eax] in A14 in Figure 2 shows the most common
type, inconsistent data dependency. Another type is invalid data
dependency in which a variable carries an invalid value that is
supposed to make the crashing program terminate earlier or follow
a different execution path. Once a constraint conflict is observed,
our algorithm can easily reject the corresponding hypothesis and
deem the pair of symbolic names is alias (or non-alias) of each
other. Otherwise, if none of these hypotheses produces constraint
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conflicts, the proceeding of reverse execution will be impeded
because we cannot reject any hypothesis.

In Figure 2, HT exposes this weakness when encountering
the example of [ebp+0x08] in A11 and [eax] in A12 as we
mentioned before. The unobserved conflicts like this imply that
there is a lack of evidence against our hypothesis test, decreasing
the mechanism’s effectiveness. Meanwhile, HT seeks conflict
recursively along the use-define chain, incurring exponential
computation cost. As VSA is of benefit to providing extra static
information and reducing performance overhead, we augment
reverse execution with it. In our design, we explore three possible
schemes to incorporate VSA:

VSA. The most intuitive reaction is to replace HT with VSA.
Given the instruction trace pertaining to a crash, we do VSA to
compute the address set of each memory access. During the time
of reverse execution, we verify the alias relation between two
memory cells by comparing their address sets. Zero overlap means
non-alias, and two identical single-value sets indicate alias. For
all the remaining cases, we regard their alias relation as unknown.
Despite this scheme has low complexity, as we will demonstrate
in our evaluation, it is limited in that its static nature will lead to
less data flow information and ultimately reduce the effectiveness
of diagnosis.

VSA+HT. In this scheme, we combine VSA and HT for alias
verification. Following the proceeding of reverse execution, when
encountering an uncertain alias, we first query VSA in the manner
as explained above. If the alias relation remains unknown, we
then switch to HT. The intuition behind this scheme is that (1) we
can combine the strengthens of both VSA and HT to achieve
the best effectiveness and (2) using VSA earlier will save a
large volume of HT to accelerate the verification process. Not
surprisingly, our evaluation shows that this scheme enhances not
only the effectiveness but also the efficiency.

Fixed Point. By intuition, the information recovered in reverse
execution may refine the results of VSA, which probably in turn
improve alias verification. Following this idea, we explored another
scheme (Algorithm 1) to incorporate VSA. Given an instruction
trace, we start with a round of reverse execution without alias
verification, building a preliminary data flow. Then we perform
a recursive analysis. In each iteration, we re-calculate the VSA
results with available run-time information and then do a round of
reverse execution following VSA+HT. We end this analysis when an
iteration cannot update the data flow (i. e., reaching a fixed point).
In theory, this scheme fully releases the potential of VSA and HT,
and indeed maximizes the recovery of data flow. Nevertheless, we
observe that this scheme shows the same level of diagnosis utility
as VSA+HT, while incurring substantially more computation cost.

In summary, the three schemes can all systematically incorpo-
rate VSA. However, only VSA+HT can achieve both improvement
from the perspectives of data flow recovery and efficiency. There-
fore, by default, we enable POMP++ to work with the VSA+HT
scheme. Note that POMP++ can be configured to run VSA and
Fixed Point in case of need.

4.3 Backward Taint Analysis
Recall that the goal of this work is to pinpoint instructions truly
pertaining to a program crash. In Section 3, we briefly introduce
how backward taint analysis plays a role in achieving this goal.
Here, we describe more details.

To perform backward taint analysis, POMP++ first identifies
a sink. In general, a program crash results from two situations –

Algorithm 1 Recursive VSA-enhanced reverse execution algo-
rithm, namely Fixed Point. Each round of reverse execution
only performs one layer of VSA+HT.
Input:

The instruction trace, inst_trace;
The core dump, core_dump;

Output:
Data flow along the instruction trace, data_flow;

1: data_flow = 0
2: temp_df = 0
3: temp_df = rev_exe_noaliasverify(temp_df)
4: while temp_df > data_flow do
5: data_flow = temp_df
6: temp_df = calculate_vsa(temp_df)
7: temp_df = do_vsa_ht(temp_df)
8: end while
9: data_flow = temp_df

executing an invalid instruction or dereferencing an invalid address.
For the first situation, POMP++ deems the program counter (eip)
as a sink because executing an invalid instruction indicates eip
carries a bad value. For the second situation, POMP++ treats a
general register as a sink because it holds a value which points to
an invalid address, like [eax] in Figure 2.

With a sink identified, POMP++ taints the sink and performs
taint propagation backward. POMP++ looks up the aforementioned
use-define chain to identify the definitions of the tainted variables
and selects them following the rule of reaching definition without
intervention. Not only the accessed memory of the tainted variables
but also base and index registers (if available) should be tainted. So,
with sink [eax] serving as the initial tainted variable, POMP++
selects A14 def:[eax]=0x0 on the chain as they are a pair
of memory aliases. In addition, A20 def:eax=eax+0x4, A19
def:eax=[ebp-0xc], etc. , are tainted successively according
to the propagation strategy. By doing so, POMP++ is guaranteed
never to miss the root cause of a program crash though it over-taints
some variables that do not actually contribute to the crash.

Similar to the situation seen in reverse execution, when
performing taint propagation backward, POMP++ may encounter a
definition on the chain which intervenes the propagation. For ex-
ample, given a tainted variable [R0] and a definition def:[R1]
with R1 unknown, POMP++ cannot determine whether R0 and R1

share the same value and POMP++ should pass the taint to variable
[R1]. When this situation appears, POMP++ follows the idea of
the aforementioned approach and examines if both variables share
the same address. When “fail-to-reject” occurs, therefore, POMP++
over-taints the variable in that intervening definition. Again, this
can ensure that POMP++ does not miss the enclosure of the root
cause.

5 IMPLEMENTATION

We have implemented a prototype of POMP++ for Linux 32-bit
system with Linux kernel 4.4 running on an Intel i7-6700HQ
quad-core processor (a 6th-generation Skylake processor) with
16 GB RAM. Our prototype consists of three major components
– ¬ a sub-system that implements Value-set Analysis on single
trace,  a sub-system that implements the aforementioned reverse
execution and backward taint analysis, and ® a sub-system that
traces program execution with Intel PT. In total, our implementation
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carries about 30,000 lines of C code. In the following, we present
some important implementation details.

Following the design description above, we implemented 84
distinct instruction handlers to perform reverse execution, backward
tainting. Furthermore, we add new instruction handlers to calculate
value set of all the a-locs. Along with these handlers, we
also built core dump and instruction parsers on the basis of
libelf [21] and libdisasm [22], respectively. Note that for
instructions with the same semantics (e.g., je, jne, and jg) we dealt
with their inverse operations in one unique handler. To keep track
of constraints and perform verification, we reuse the Z3 theorem
prover [23, 24].

To allow Intel PT to log execution in a correct and reliable
manner, we implemented the second sub-system as follows. We
enabled Intel PT to run in the Table of Physical Addresses
(ToPA) mode, which allows us to store PT packets in multiple
discontinuous physical memory areas. We added to the ToPA an
entry that points to a 16 MB physical memory buffer. In our
implementation, we use this buffer to store packets. To be able to
track if the buffer is fully occupied, we clear the END bit and set
the INT bit. With this setup, Intel PT can signal a performance-
monitoring interrupt at the moment the buffer is fully occupied.
Moreover, we intercepted the context switch to enable POMP++ to
examine the threads in/out, and store PT packets for each thread.

Considering the Intel CPU utilizes Supervisor Mode Access
Prevention (SMAP) to restrict the access from kernel to user space,
our implementation toggles SMAP between packet migration. In
addition, we configured Intel PT to exclude packets irrelevant
to control flow switching (e.g., timing information) and paused
its tracing when execution traps into kernel space. In this way,
POMP++ is able to log an execution trace sufficiently long. Last but
not least, we introduced new resource limit PT_LIMIT into the
Linux kernel. With this, software developers and security analysts
can not only select which process to trace, but also configure the
size of the circular buffer in a convenient manner.

Recall that our customized VSA often needs to extend the
truncated trace beginning to cover the full function. This extending
operation requires analysis over the control flow graph (CFG) of the
first function. To support that, we reuse the CFG-recovery utility
shipped with the open source project angr [25].

6 EVALUATION

In this section, we demonstrate the utility of POMP++ using
the crashes resulting from real-world vulnerabilities. To be more
specific, we present the effectiveness and efficiency of POMP++,
and discuss those crashes that POMP++ fails to handle properly.

6.1 Experiment Setting
6.1.1 Experiment Setup
To demonstrate the utility of POMP++, we selected 30 programs
and benchmarked POMP++ with their crashes resulting from
33 real-world PoCs obtained from Offensive Security Exploit
Database Archive [26]. Table 2 shows these crashing programs
and summarizes the corresponding vulnerabilities. As we can
observe, the selected programs cover a wide spectrum ranging
from sophisticated software like BinUtils with lines of code
over 690K to lightweight software such as stftp and psutils
with lines of code less than 2K.

Regarding vulnerabilities resulting in the crashes, our test
corpus encloses not only 28 memory corruption vulnerabilities

(stack/heap overflow, integer overflow, use-after-free) but also
5 common software defects like null pointer dereference and
invalid free. The reason behind this selection is to demonstrate
that, beyond memory corruption vulnerabilities, POMP++ can be
generally applicable to other kinds of software defects.

6.1.2 Experimental Design
For each program crash shown in Table 2, we performed manual
analysis with the goal of finding out the minimum set of instructions
that truly contribute to that program crash. We took our manual
analysis as ground truth and compared them with the output of
POMP++. In this way, we validated the effectiveness of POMP++
in facilitating failure diagnosis. More specifically, we compared the
instructions identified manually with those pinpointed by POMP++.
The focuses of this comparison include (1) examining whether the
root cause of that crash is enclosed in the instruction set POMP++
automatically identified, (2) investigating whether the output of
POMP++ covers the minimum instruction set that we manually
tracked down, and (3) exploring how many memory addresses
could be resolved in each scheme.

In order to evaluate the efficiency of POMP++, we recorded the
time of different schemes they took when spotting the instructions
that truly pertain to each program crash for further comparison.

Considering pinpointing a root cause does not require reversely
executing the entire trace recorded by Intel PT, it is noteworthy
that, we selected and utilized only a partial execution trace for
evaluation. In this work, our selection strategy follows an iterative
procedure in which we first introduced instructions of a crashing
function to reverse execution. If this partial trace is insufficient for
spotting a root cause, we traced back functions previously invoked
and then included instructions function-by-function until that root
cause can be covered by POMP++.

6.2 Experimental Results
6.2.1 Effectiveness
As a postmortem program analysis, the most intuitive utility
indicator of POMP++ is its effectiveness in tracking down the
root cause. To serve this evaluation, we perform four sets of
experiments, one performing reverse execution with HT only
and others performing reverse execution with the three schemes
described in Section 4 respectively. As shown in Table 2, the two
hybrid schemes, VSA+HT and Fixed Point, have better utilities
than HT or VSA alone in identification of root causes. Other than the
cases that are missed by all the schemes (aireplay-ng-1.2b3
and 0verkill-0.16), our hybird schemes capture the root
cause in all the cases. However, HT additionally misses the cases
of gdb-7.5.1 and JPegToAvi-1.5 and VSA additionally
misses the cases of unrar-3.9.3 and JPegToAvi-1.5. In
the following we briefly explain those cases.

gdb-7.5.1. Figure 5 shows the propagation of corrupted memory
that leads to the crash in gdb-7.5.1. Specifically, a defect at
instruction 1 corrupts the memory indexed by [edi]. The bad
memory propagates from instruction 1 to instruction 6 ([edi]
at instruction 1 and [esp+0xC] at instruction 6 are alias) and
then through instruction 6 ([esp+0xC] to ebx), instruction 7
(ebx to [esp]), instruction 9 ([esp] to esi), until instruction
10 (bad value in esi is used as memory address). HT fails to
capture the propagation from instruction 1 to instruction 6. This
is because the memory write to [eax] at instruction 3 has an
unknown address, and HT cannot determine the alias relation
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TABLE 2
The list of program crashes resulting from various vulnerabilities. CVE-ID specifies the ID of the CVEs. Trace Length indicates the lines of
instructions that POMP++ reversely executed. HT indicates reverse execution with HT only, and VSA, VSA+HT, and Fixed Point are the three

schemes of VSA-enhanced reverse execution described in Section 4.2.2. Mem addr known(%) illustrates the percentage of memory locations, the
addresses of which are resolvable. Mem addr inc(%) with +/- means the corresponding percentage differences compared with Mem addr

known(%) of HT.

Vulnerability Diagnose Results

Name LoC CVE-ID
Trace HT VSA VSA + HT Fixed Point
Length Root

Cause
Mem addr
known (%)

Root
Cause

Mem addr
inc (%)

Root
Cause

Mem addr
inc (%)

Root
Cause

Mem addr
inc (%)

coreutils-8.4 138135 2013-0223 4000 3 85.89% 3 +0.00% 3 +6.70% 3 +10.80%
coreutils-8.4 138135 2013-0222 5867 3 38.76% 3 -0.22% 3 +9.55% 3 +14.90%
coreutils-8.4 138135 2013-0221 5015 3 99.44% 3 +0.00% 3 +0.00% 3 +0.08%
mcrypt-2.5.8 37439 2012-4409 1350 3 87.45% 3 -19.37% 3 +0.00% 3 +1.11%
BinUtils-2.15 697354 2006-2362 867 3 100.00% 3 -1.57% 3 +0.00% 3 +0.00%
unrtf-0.19.3 5039 NA 1085 3 100.00% 3 +0.00% 3 +0.00% 3 +0.00%
psutils-p17 1736 NA 3123 3 62.57% 3 -1.90% 3 +6.16% 3 +13.63%
stftp-1.1.0 1559 NA 3651 3 98.77% 3 -3.03% 3 +0.79% 3 +0.79%
nasm-0.98.38 33553 2004-1287 4064 3 30.73% 3 +62.40% 3 +69.27% 3 +69.27%
libpng-1.2.5 33681 2004-0597 4214 3 56.63% 3 +1.30% 3 +8.69% 3 +13.30%
putty-0.66 90165 2016-2563 7338 3 72.32% 3 -4.38% 3 +1.03% 3 +2.78%
Unalz-0.52 8546 2005-3862 61999 3 54.28% 3 +0.01% 3 +20.96% 3 +36.03%
LaTeX2rtf-1.9 14473 2004-2167 17056 3 30.59% 3 +49.76% 3 +49.76% 3 +49.76%
aireplay-ng-1.2b3 62656 2014-8322 18569 7 72.81% 7 +0.40% 7 +0.40% 7 +0.04%
corehttp-0.5.3a 914 2007-4060 25385 3 100.00% 3 +0.00% 3 +0.00% 3 +0.00%
gas-2.12 595504 2005-4807 25713 3 34.89% 3 +0.51% 3 +20.61% 3 +35.39%
abc2mtex-1.6.1 4052 NA 29521 3 56.79% 3 +0.25% 3 +17.77% 3 +28.28%
LibSMI-0.4.8 80461 2010-2891 50787 3 86.43% 3 -4.70% 3 +0.04% 3 +0.07%
gif2png-2.5.2 1331 2009-5018 70854 3 43.31% 3 -0.01% 3 +8.02% 3 +16.40%
O3read-0.03 932 2004-1288 78244 3 54.42% 3 -0.08% 3 +13.80% 3 +19.75%
unrar-3.9.3 17575 NA 36216 3 95.29% 7 -4.34% 3 +0.00% 3 +4.71%
nullhttp-0.5.0 1849 2002-1496 460 3 94.38% 3 +0.00% 3 +0.00% 3 +0.00%
nginx-1.4.0 100255 2013-2028 158 3 100.00% 3 +0.00% 3 +0.00% 3 +0.00%
Python-2.2 416060 2007-4965 3426 3 87.44% 3 +0.00% 3 +1.20% 3 +2.83%
0verkill-0.16 16361 2006-2971 10494 7 nan 7 nan 7 nan 7 nan
openjpeg-2.1.1 169538 2016-7445 1035 3 41.30% 3 +0.00% 3 +1.19% 3 +18.50%
podofo-0.9.4 60147 2017-5854 42165 3 99.88% 3 -2.14% 3 +0.12% 3 +0.12%
Python-2.7 906829 NA 551 3 100.00% 3 +0.00% 3 +0.00% 3 +0.00%
poppler-0.8.4 183535 2008-2950 672 3 100.00% 3 +0.00% 3 +0.00% 3 +0.00%
Ntpd-4.2.6 152433 NA 1766 3 52.42% 3 -1.10% 3 +0.74% 3 +2.20%
prozilla-1.3.6 13070 2004-1120 5560 3 34.85% 3 +1.79% 3 +1.92% 3 +2.25%
gdb-7.5.1 1651764 NA 4009 7 69.69% 3 +6.97% 3 +9.5% 3 +25.05%
JPegToAvi-1.5 580 NA 133734 7 46.91% 7 -6.22% 3 +12.56% 3 +15.01%

1 stos es:[edi], eax ; root cause
2 ......
3 mov [eax], ecx ; unknown memory access
4 xor eax, eax
5 ......
6 mov ebx, [esp+0xC]
7 mov [esp], ebx
8 ......
9 mov esi, [esp]

10 mov ecx, [esi] ; crashing instruction

Fig. 5. Propagation of corrupted memory leading to the crash in
gdb-7.5.1

between that memory write and [esp+0xC] at instruction 6
using the recovered dynamic information. Hence, HT assumes
[edi] at instruction 1 may get overwritten at instruction 3, which
would not flow to instruction 6. By contrast, VSA has no such
difficulty as [esp+0xC] at instruction 6 accesses the stack and
[eax] accesses the heap (the index is propagated from the return
value of malloc).

unrar-3.9.3. We present the corrupted memory propagation of
this case in Figure 6. The memory cell [eax] at instruction
1 is corrupted. It then propagates through the following path:
from instruction 1 to instruction 8 ([eax] and [esp+0x4]
are aliases), from instruction 8 to instruction 9 (flow carried by
eax), from instruction 9 to instruction 11 ([ecx] and [ebx]
are aliases), from instruction 11 to instruction 12 (flow carried
by esi). Using pure static analysis, VSA infers that edx after

1 mov byte ptr [eax], al ; root cause
2 ......
3 and edx, edi ; edx:meaningless value set
4 mov [edx], ebx ; unknown memory access
5 mov [edx+0x4], eax ; unknown memory access
6 ......
7 ......
8 mov eax, [esp+0x4]
9 mov [ecx], eax
10 ......
11 mov esi, [ebx]
12 mov eax, [esi] ; crashing instruction

Fig. 6. Propagation of corrupted memory leading to the crash in
unrar-3.9.3

instruction 3 could carry arbitrary value, failing to understand the
addresses of the two memory writes at instruction 4 and instruction
5. Therefore, VSA cannot determine the propagation from [eax]
at instruction 1 to [esp+0x4] at instruction 8. Alternatively, HT
can learn the concrete value of edx after instruction 3 from the
recovered information and hence, avoid the problem encountered
by VSA.

JPegToAvi-1.5. In this case, the memory corrupted at instruction
1 (i. e., [ebx]) propagates to the crash site through instruction
10, instruction 12, instruction 14 and instruction 15 (as shown in
Figure 7). To determine the first hop in the propagation, we need to
know that [ebx] at instruction 1 and [esp] at instruction 10 are
aliases and the two memory accesses neither alias with [ecx] at
instruction 3 nor [eax] at instruction 7. However, VSA can only
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1 mov byte ptr [ebx], cl ; root cause
2 ......
3 mov [ecx], ebx ; unknown memory access
4 xor ecx, ecx
5 ......
6 and eax, [ebx] ; eax:meaningless value set
7 mov [eax], edi ; unknown memory access
8 mov [esp+0x1C], eax
9 ......

10 mov esi, [esp]
11 lea ebx, [esp+0x14]
12 mov [ebx], esi
13 ......
14 mov eax, [esp]
15 mov eax, [eax] ; crashing instruction

Fig. 7. Propagation of corrupted memory leading to the crash in
jpegtoavi-1.5

infer the non-alias relation between [esp] at instruction 10 and
[ecx] at instruction 3 ([esp] accesses the stack while [ecx]
accesses the heap), and HT can only determine the other required
non-alias relation. Therefore, VSA or HT alone fails in this case,
but combining them two can succeed.

Going beyond the identification of root causes, a more general
metric of reverse execution is data flow recovery [1, 10]. The reason
is that identification of root causes actually depends on small pieces
of data flow, carrying high randomness as an evaluation metric.
To evaluate POMP++ in a more objective manner, we perform
another measurement, in which we quantify the data flow rebuilt
by each method. To be more specific, when the enhanced reverse
execution terminates, we count the percentage of memory accesses
with known addresses. We believe this percentage well represents
the comprehensiveness of data flow building, because it essentially
corresponds to the extension that we understand use-define relations.
The measurement results are shown in Table 2. From Table 2, we
can first observe that VSA is less effective in recovering memory
footprints than HT. To be specific, there are 24 out of 33 cases in
which HT surpasses or equals VSA. This fact indicates that pure
VSA will possibly lead to more failures in root cause diagnosis
and is not effective enough compared with HT. Meanwhile, the
hybrid schemes VSA+HT and Fixed Point, which combine
VSA and HT for alias verification, outperform the HT in all cases,
respectively increasing the percentage of known memory address
by 12% in 22 cases and by 16% in 25 cases. The reason behind the
increase is that VSA solves more addresses that HT cannot handle,
and so do HT.

Summarizing the above measurement, merely using VSA for
reverse execution leads to reduced diagnosis capability and weak
memory footprint recovery than using HT alone. Hybrid methods
integrating VSA and HT achieve the best results of memory
recovery and root cause diagnosis.

6.2.2 Efficiency
Going beyond the effectiveness improvement of reverse execution,
we also aim to achieve better efficiency via introducing VSA. To
better demonstrate the efficiency of POMP++, we measure the
computation complexity of the above experiments and show the
results in Table 3.

Although pure VSA takes significantly less time than the other
three schemes in all cases shown in Table 3, its defects of lower
recovery ability and root causes missing determine that it is not

TABLE 3
Measurement of reverse execution efficiency. The execution time of HT is
listed as a baseline. The performance improvement of ×VSA denotes
the ratio of execution time of HT to VSA. It is the same with ×VSA+HT

and ×FixedPoint.

Vulnerability Time Performance Improvement
Name CVE-ID HT ×VSA ×VSA+HT ×FixedPoint

coreutils-8.4 2013-0223 4.9s 1.44 1.09 0.82
coreutils-8.4 2013-0222 36.6s 21.53 1.22 0.68
coreutils-8.4 2013-0221 8.6s 3.31 2.26 2.05
mcrypt-2.5.8 2012-4409 3s 4.29 1.30 0.79
BinUtils-2.15 2006-2362 3s 7.50 1.25 0.75
unrtf-0.19.3 NA 1m10s 14.00 1.27 0.88
psutils-p17 NA 4m 11.88 1.59 1.04
stftp-1.1.0 NA 4m 6.86 1.31 0.86
nasm-0.98.38 2004-1287 1m4s 16.00 10.67 9.14
libpng-1.2.5 2004-0597 5m46s 1.97 1.09 0.96
putty-0.66 2016-2563 30m 163.64 15.00 6.00
Unalz-0.52 2005-3862 6h 59.02 4.29 1.16
LaTeX2rtf-1.9 2004-2167 8m4s 1.03 1.01 0.98
aireplay-ng-1.2b3 2014-8322 10m32s 1.89 1.30 1.27
corehttp-0.5.3a 2007-4060 52m 32.16 4.33 2.60
gas-2.12 2005-4807 46m7s 4.24 4.02 3.51
abc2mtex-1.6.1 NA 2h 30.64 5.31 3.16
LibSMI-0.4.8 2010-2891 5h5m 25.42 1.05 0.73
gif2png-2.5.2 2009-5018 31m 3.44 0.65 0.49
O3read-0.03 2004-1288 23m 4.58 1.10 0.72
unrar-3.9.3 NA 5m30s 5.32 1.81 1.43
nullhttp-0.5.0 2002-1496 0.2s 2.00 1.00 0.67
nginx-1.4.0 2013-2028 3.2s 1.33 0.97 0.94
Python-2.2 2007-4965 3m 2.17 1.36 0.90
0verkill-0.16 2006-2971 1s 1.00 1.00 1.00
openjpeg-2.1.1 2016-7445 0.3s 3.00 1.50 1.00
podofo-0.9.4 2017-5854 2m 2.14 1.09 0.82
Python-2.7 NA 0.2s 2.00 1.00 0.67
poppler-0.8.4 2008-2950 13s 2.60 1.63 1.18
Ntpd-4.2.6 NA 3.8s 12.67 0.76 0.54
prozilla-1.3.6 2004-1120 2m14s 1.60 1.03 0.93
gdb-7.5.1 NA 1m2s 1.11 1.05 0.78
JPegToAvi-1.5 NA 8h25m 8.29 6.10 1.37

suitable for the postmortem program analysis which focuses on
pinpointing instructions pertaining to the crash. However, the fact
that the execution time of VSA is 15x less than HT still well
supports our intuition that static analysis has superior efficiency.

Thus, we focus on the measurement of the time complexity
of two hybrid methods. On average, VSA+HT reduces 60% of
execution time compared with the single HT, while Fixed
Point executes even more time than HT. By intuition, they shall
avoid a great number of hypothesis testing and would reduce the
computation complexity. In 30 cases of VSA+HT and 14 cases of
Fixed Point, our evaluation shows that the combination takes
less or equal time than using hypothesis testing only. For cases in
which hypothesis testing takes less time, we believe it is mainly
because VSA recovers more information that can be consumed
by hypothesis testing and in turn triggers further space of reverse
execution. This is actually supported by the above effectiveness
evaluation.

To sum up, though Fixed Point recovers the most memory
footprints, it involves the most computations complexity which
is unacceptable. The other hybrid method VSA+HT can achieve a
great balance between effectiveness and efficiency, i. e., maintain
similarly high recovery ability to Fixed Point and reduce
execution time massively. Thus, POMP++ chooses to implement
VSA+HT for augment by default. If needed, we additionally provide
configurations of VSA for time-critical scenarios and Fixed
Point for accuracy-critical ones.

7 RELATED WORK

This research work mainly focuses on locating software vulnerabil-
ity from its crash dump. Regarding the techniques we employed
and the problems we addressed, the lines of works most closely
related to our own include reverse execution and postmortem
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program analysis, static analysis for binary-level memory alias.
In this section, we summarize previous studies and discuss their
limitation in turn.

Reverse execution. Reverse execution is a conventional debugging
technique that allows developers to restore the execution state of a
program to a previous point. Pioneering research [27–30] in this
area relies upon restoring a previous program state from a record,
and thus their focus is to minimize the amount of records that one
has to save and maintain in order to return a program to a previous
state in its execution history. In addition to state saving, program
instrumentation is broadly used to facilitate the reverse execution of
a program. For example, Hou et al. designed compiler framework
Backstroke [31] to instrument C++ program in a way that it
can store program states for reverse execution.

Given that state saving requires extra memory space and
program instrumentation results in a slower forward execution,
recent research proposes to employ a core dump to facilitate reverse
execution. In [2] and [32], new reverse execution mechanisms are
designed in which the techniques proposed reversely analyze code
and then utilize the information in a core dump to reconstruct the
states of a program prior to its crash. Since the effectiveness of
these techniques highly relies upon the integrity of a core dump,
and exploiting vulnerabilities like buffer overflow and dangling
pointers corrupt memory information, they may fail to perform
reverse execution correctly when memory corruption occurs.

Different from the prior research works discussed above, the
reverse execution technique introduced in this paper follows a
completely different design principle, and thus it provides many
advantages. First, it can reinstate a previous program state without
restoring that state from a record. Second, it does not require any
instrumentation to a program, making it more generally applicable.
Third, it is effective in performing execution backward even though
the crashing memory snapshot carries corrupted data.

Postmortem program analysis. Liblit et al. proposed a backward
analysis technique for crash analysis [33]. To be more specific, they
introduced an efficient algorithm that takes as input a crash point
as well as a static control flow graph, and computes all the possible
execution paths that lead to the crash point. As is mentioned earlier,
memory information may be corrupted when attackers exploit a
program. The technique described in [33] highly relies upon the
integrity of the information resided in memory, and thus fails to
analyze program crash resulting from malicious memory corruption.
In this work, we directly identify the root cause of software failures
by reversely executing the program and reconstructing memory
footprints prior to the crash.

Considering the low cost of capturing core dumps, prior
studies also proposed to use core dumps to analyze the root
causes of software failures. Of all the works along this line, the
most typical ones include CrashLocator [34], !analyze [3]
and RETracer [2] which locate software defects by analyzing
memory information resided in a core dump. As such, these
techniques are not suitable to analyze crashes resulting from
malicious memory corruption. Different from these techniques,
Kasikci et al. introduced Gist [35], an automated debugging
technique that utilizes off-the-shelf hardware to enhance core dump
and then employs a cooperative debugging technique to perform
root cause diagnosis. While Gist demonstrates its effectiveness
on locating bugs from a software crash, it requires the collection
of crashes from multiple parties running the same software and
suffering the same bugs. This could significantly limit its adoption.

In our work, we introduce a different technical approach which
can perform analysis at the binary level without the participation
of other parties.

In recent research, Xu et al. [7] introduced CREDAL, an
automatic tool that employs the source code of a crashing program
to enhance core dump analysis and turns a core dump to an
informative aid in tracking down memory corruption vulnerabilities.
While sharing a common goal with our system – pinpointing
the code statements where a software defect is likely to reside –
CREDAL follows a completely different technical approach. More
specifically, CREDAL discovers the mismatch in variable values
and deems the code fragments corresponding to the mismatch as
the possible vulnerabilities that lead to the crash. In this work,
POMP++ precisely pinpoints the root cause of vulnerability by
utilizing the memory footprints recovered from reverse execution.

REPT introduced by Cui et al. [10] reconstructed the execution
states with high fidelity by combining online Intel Processor
Tracing with offline binary analysis which recovers previous data
flow. To be specific, it performs iterative backward and forward
binary analysis to detect and correct the inconsistency. And REPT
could handle concurrent programs by timing information obtained
from Intel PT. Instead of error correction, POMP++ leverages Value-
set Analysis to facilitate reverse execution with more accurate and
precise memory alias result. With iteratively combining reverse
execution and static Value-set Analysis, in theory, POMP++ could
recover more data flow than REPT.

Static analysis for binary-level memory alias. There is a long
history of research about analyzing memory alias in binary
code. As pioneering research works, Debray et al. [16] and
Cifuentes et al. [36] both proposed the same type of technical
approaches that compute the values a set of registers can hold at
each program point and then use the values held in the registers to
determine alias. Considering such techniques determine only the
possible values held in each register, but do not reason about values
across memory operations, Brumley et al. proposed a logic-based
approach which derives all possible alias relationships by finding
an over-approximation of the set of values that each memory
location and register can hold at each program point [18]. At
a high level, this logic-based approach is similar to Value-set
Analysis [11, 12, 37] because they both perform value reasoning
across memory operations. However, different from the work
proposed in [18], Value-set Analysis neither assumes that all
memory cells and register locations must be of a single fixed
width, nor assumes reads and writes have to be no overlapping.
As such, the value set analysis is more practical for real-world
applications, whereas the logic-based approach [18] has been tested
only against simple toy examples. So in this work, we propose
POMP++ which leverages VSA to analyze binary-level memory
alias to facilitate postmortem program analysis.

8 DISCUSSION

In this section, we discuss the limitations of our current design,
insights we learned and possible future directions.

Multiple threads. POMP++ focuses only on analyzing the post-
crash artifact produced by a crashing thread, so we may miss
vulnerabilities caused by thread interleaving. However, this does not
mean the failure of POMP++, nor does it significantly downgrades
the utility of POMP++ due to following reasons. First, a prior
study [38] has already indicated that a large fraction of software
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crashes involves only the crashing thread. Second, with integration
of Intel PT timing information, we think POMP++ can synthesize a
complete execution trace, making POMP++ work properly. As part
of the future work, we will integrate this extension into the next
version of POMP++.

Just-in-Time native code. POMP++ retrieves instructions from
executable and library files by recorded program flow information.
However, it fails to analyze binary code generated on the fly by
Just-in-Time (JIT) mechanism. To make POMP++ handle programs
in this type, in the future, we will augment POMP++ with the
capability of tracing and logging native code generated at the run
time. For example, we may monitor the executable memory and
dump JIT native code accordingly.

9 CONCLUSION

In this paper, we develop POMP++ on Linux system to analyze
post-crash artifacts. Especially, we make an effort to improve the
ability to solve memory alias problem during reverse execution
by introducing static analysis (i. e., Value-set Analysis). We show
that POMP++ can significantly reduce the manual efforts on the
diagnosis of program failures, making software debugging more
informative and efficient. Since the design of POMP++ is entirely
on the basis of the information resided in a post-crash artifact,
the technique proposed can be generally applied to diagnose the
crashes of programs written in various programming languages
caused by various software defects.

We demonstrated the effectiveness and efficiency of POMP++
using the real-world program crashes pertaining to 31 software vul-
nerabilities. We showed that POMP++ could reversely reconstruct
the memory footprints of a crashing program and accurately and
quickly identify the program statements (i. e., instructions) that
truly contribute to the crash. While POMP++ increases 12% of
resolvable memory addresses, it reduces 60% of execution time,
compared with the previous POMP. Following this finding, we
safely conclude POMP++ can significantly downsize the program
statements that a software developer (or security analyst) needs to
manually examine.
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