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Abstract—Vulnerability reproduction paves a way in debugging
software failures, which need intensive manual efforts. However,
some key factors (e.g., software configuration, trigger method)
are often missing, so we can not directly reproduce the failure
without extra attempts. Even worse, highly customized configu-
ration options of programs create a barrier for reproducing the
vulnerabilities that only appear under some specific combinations
of configurations.

In this paper, we address the problem mentioned above —
reproducing the configuration-related vulnerability. We try to
solve it by proposing a binary similarity-based method to infer the
specific building configurations via the binary from crash report.
The main challenges are as follows: precise compilation option
inference, program configuration inference, and source-code-to-
binary matching. To achieve the goal, we implement RoBin, a
binary similarity-based building configuration inference tool. To
demonstrate the effectiveness, we test RoBin on 21 vulnerable
cases upon 4 well-known open-source programs. It shows a
strong ability in pinpointing the building configurations causing
the vulnerability. The result can help developers reproduce and
diagnose the vulnerability, and finally, patch the programs.

Index Terms—Binary Code Similarity, Building Configura-
tions, Reproduction, Vulnerability.

I. INTRODUCTION

Despite the best efforts of software developers, software
systems inevitably contain defects that may be leveraged
as vulnerabilities. In the real world, these vulnerabilities
could lead to many notorious cyberattacks, such as Stuxnet,
WannaCry Ransomware [1], HeartBleed [2]. Since modern
software systems are becoming more complex and release
cycles are getting shorter, testing teams are unable to identify
all the possible vulnerabilities before a software release. Thus
software systems are typically released with many underlying
vulnerabilities and end-users may experience software fail-
ures. Considering the performance overhead, when software
crashes, only a crash report with the necessary information
will be sent to the developers. The developers first need to
reproduce the failure so can they diagnose and patch the
vulnerability.

Existing Works. For software failures, the reproduction of
underlying vulnerabilities is a key stage in the vulnerability
diagnosis. Without reproduction, software developers are un-
able to diagnose the root causes and eventually verify whether
vulnerabilities are fixed or not. There are several existing
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works that attempt to reproduce the underlying vulnerabilities
and enables software developers to check the input and pro-
gram state that lead to software failures. Mu et al. [3] show
that vulnerability reproduction is difficult in the real world
and there are many missing key factors in the vulnerability
reports, such as building configurations, Proof-of-Concept
(PoC), trigger method, etc. REPT [4] leverages online trace
recording from Intel Processor Tracing (Intel PT) and offline
binary analysis to facilitate reverse debugging of software
failures. Hercules [5] takes advantage of symbolic execution to
generate one input which reproduces the give software crash.
BugRedux [6] conducted one empirical analysis, to understand
the trade-offs between different execution data recording and
the effectiveness of approaches.

Limitations. However, some vulnerabilities only occur
when the specific code segment controlled by specific program
configurations is compiled into the binary, which we call
configuration-related vulnerabilities. Only can the developers
reproduce the failure when they get the binary containing the
vulnerable code segment. Nevertheless, though they can repro-
duce the failure, software developers and security analysts still
need to instrument source code with sanitizers (e.g., Address
Sanitizer [7]) to locate and diagnose the vulnerability. To be
concrete, if we want to patch the program, it is vital to hold
the source code and non-stripped vulnerable binary at the
same time. So it is quite significant to figure out the program
configurations of the configuration-related vulnerabilities.

For the developers, the crash report is the most accessable
resource, which is collected by several tools (e.g., Windows
Error Reporting [8], breakpad [9]), and records the memory
dump with other signals at the crashing time. It is reasonable
to figure out the building configurations from code segments
extracted from the report. To the best of our knowledge, none
of the previous works attempts to infer the building configu-
rations from the crash report to facilitate the reproduction of
configuration-related vulnerabilities.

Our Approach. To this end, we present a system called
RoBin, a practical solution to figure out the configurations in
the building process from the code segment of the crash report.
The method is beneficial to reproduce the vulnerabilities in the
highly configurable programs, even for the further diagnosis
and patch process. In this work, we mainly focus on inferring
the provenance of building configurations (that is how the



binary is compiled with specific compilation options and
program configurations) from the crash report. To consolidate
our work, we conduct one empirical analysis of how the dif-
ferent building configurations affect the similarity of generated
binaries.

To achieve this goal, we present a comparison-based strat-
egy to extract the configurations from the code segment of
the crash report (called crash report binary later). Firstly, by
recursively generating similar binaries with the crash report
binary, we efficiently and precisely search the most possible
provenance of compilation options. To this step, we hold
the crash report binary and the generated binary with the
highest similarity on hand. Then, we capture the difference
between crash report binary and generated binary, and map
it by the self-defined features with the source code to infer
the provenance of program configuration(s). Finally, if we
successfully get the correct building configurations, we can
reproduce the failure, and the program can be carefully diag-
nosed and patched without any missing information.

To demonstrate the utility of RoBin, it is evaluated on a
set of 21 real-world configuration-related vulnerabilities via
4 well-known programs. Our experiment shows that RoBin
could effectively figure out the building configurations needed
to generate the vulnerable binary and reproduce the failure,
with only 2 cases failed with limited information.

Contributions. The contributions are as follows:

• We conduct an investigation on how the different build-
ing configurations influence the generated binaries on bi-
nary similarity. Based on the discovery, we propose a
comparison-based strategy to infer the provenance of build-
ing configurations.

• We implement a prototype called RoBin on Linux to
facilitate software developers and security analysts in re-
producing the configuration-related vulnerabilities.

• We demonstrate the effectiveness of the system on 21 real-
world vulnerabilities. 19 vulnerabilities are successfully
reproduced, and the output results are available for further
applications, such as root cause diagnosis, vulnerability
patching.

II. BACKGROUND AND MOTIVATIONS

A. Variability of Binary Building
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Fig. 1. Configs and programs.
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Fig. 2. Example of CVE-2018-14567

Configuration-related Vulnerability. Configuration-related
vulnerabilities only exist under a specific combination of
program configurations in a software system.

GNU AutoTools [10], like the GNU compilation system, is
a toolset that helps developers adapt source code to various
Unix-like systems. Based on the GNU AutoTools compilation
system, developers can use Makefile at the file level or at
a more fine-grained level to control the content during the
compilation process. As shown in the Figure 1, libxml uses
macros (e.g., LIBXML LZMA ENABLED) to control whether
the code is compiled into an executable file. When running
the config script, it will read the value of the program
configurations, to control whether the source code is compiled
into the executable file during conditional compilation. As for
PHP, the program configurations are realized through file-level
(e.g., exif.o)control configuration. It modifies the Makefile to
control the compilation process. This mechanism is necessary
to support a wide variety of hardware and specific program
settings, but it introduces problems in reproducing vulnerabil-
ities in those highly configurable systems.

Motivation Example. Take the following situation as an
example. If a specific program configuration controls the
vulnerable code, which is missed in the building process, the
generated binary is non-vulnerable and the reproduction fails
without observing any abnormal behaviors. The vulnerability
can not be reproduced without any extra information. Take
the case shown in Figure 2 as an example. We get a benign
binary by compile the xmllint with default option, while we
get a malicious one with the extra Macro option –with-lzma.

So it is obvious to come out a naive solution — enabling
all of the configurations trying to include the vulnerable
code. However, it is not practical in the real world after our
thorough investigation. On the one hand, some configurations
are mutually exclusive. It is impossible to compile all the
source code into binary at one time. On the other hand,
other configurations in the building process might influence
the execution of the vulnerable program, and the generated
binary with all possible program configurations will fail to
reproduce the target vulnerability. Therefore, we need to treat
or include each program configuration conservatively in case
they could lead to the failure of reproduction.

Security Researchers Missing InformationCrash Report
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• Operating System

• Software Installation

• Software Configuration

• Proof-of-Concept File

• Trigger Method

• Vulnerability Verification

Fail to Trigger the Bug

Fig. 3. Software Building Process.

B. Vulnerability Reproduction
Nowadays software vendors are increasingly relying on the

power of software users to identify security vulnerabilities.
Once software developers receive those failure reports from
software users, they will reproduce and identify the underly-
ing vulnerabilities promptly. However, previous works have
shown failure reports usually lack much key information on
vulnerability reproduction [3], [11]. To understand the repro-
ducibility of software vulnerabilities, one study [3] conducted



an empirical analysis of real-world security vulnerabilities,
intending to quantify their reproducibility. The study shows
that vulnerability reproduction is difficult and needs intensive
manual efforts. And software installation is usually a missing
key factor that makes vulnerability reproduction difficult,
which is shown in Figure 3. The software installation builds
the vulnerable binary and installs it to one specific path. And
the key point in this step is how to build the vulnerable binary
from source code. That is, in our scenario, it is vital to get the
precise program configuration(s).

a) Similarity of All Data

b) Similarity of Same Compiler (Clang)

c) Similarity of Same Compiler (GCC)

d) Similarity of Same Version (Clang 5.0)

e) Similarity of Same Version (GCC 7.0)

Fig. 4. Cross-Compiler, Cross-Optimization Level, Cross- Compiler Version
Binary Similarity Comparison by BinDiff

III. ANALYSIS ON BINARY COMPARISON

Like the aforementioned, the specific value of program
configurations is hard to be extracted from crash report binary
with scattered information. So it need to be split the goal into
two stages: compilation option inference stage and program
configuration inference stage. The reason for firstly inferring
the compilation options is because the features of them are
distributed globally across the binary, and the information of
program configurations need to be matched more precisely.
Once the compilation options are confirmed, RoBin can con-
centrate on finding the configurations without being distracted
by other information.

In this section, an empirical study is conducted on the binary
similarity measured by BinDiff, to investigate how the binaries
behave differently that are compiled from the same source
code but with different compilation options. The investigation
result can guide us to figure out the suspected compilation
options by leveraging the feedback of BinDiff.

To scope the field, RoBin is experimented on 2 compilers
(GCC and Clang), 5 optimization levels (O0, O1, O2, O3, Os
separately), and 5 versions for each compiler (5.0, 6.0, 7.0,
8.0, 9.0 for GCC, 3.9, 4.0, 5.0, 6.0, 7.0 for Clang). Under this
setting, a piece of source code has 50 (2 × 5 × 5) possible
combinations of compilation options. Figure 4 presents the
cross-comparison between 50 sets of binaries compiled with
different compilation options, measured by BinDiff. Figure 4
a) shows the full scene of the result. Due to the limited space,
part of the description of the grids is omitted. From the top row
to the bottom, the grid separately denotes Clang-39-O0, Clang-
39-01, Clang-39-O2, Clang-39-O3, Clang-39-Os, Clang-40-
O0, ..., and so on. The color of the grid represents the grade

of similarity between the two binaries. The darker, the more
similar. For instance, the grid in row 1 column 2 denotes the
similarity between the binaries compiled with Clang-39-O0
and Clang-39-O1, which are not that similar. As for the sub-
figure b) and c), it is easier to capture the trend of similarity
of the same compiler. And the sub-figure d) and e) that shows
the trend in the same version but with different optimization
levels.

According to the figures, the following findings inspire the
further procedure of inferring compilation options:
• Findings for Sub-Figure a) ¶ Binaries compiled with -

O0 behave quite differently from -O1, -O2, -O3, and -Os,
no matter which compiler. · In the vertical comparison,
binaries compiled by the same compiler has a higher
similarity under the same optimization level.

• Findings for Sub-Figure b) and c)
¸ Neighboring compiler versions (i.e., GCC-5 and GCC-7
are the neighboring compiler versions of GCC-6) process
more similar than others, which will slightly influence how
the optimization level affect the binary. ¹ Binaries compiled
with the same optimization level behave more similar from
the same compiler, no matter which version.

• Findings for Sub-Figure d) and e) º Neighboring
optimization levels (i.e., -O1 and -O3 are the neighboring
optimization levels of -O2) make the binary more similar,
but only ranging from -O0 to -O3. -Os behave more similar
with -O2 rather than -O3.

IV. PROBLEM STATEMENT
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Fig. 5. Brief Workflow according to RoBin

A. Problem Definition

• Input: crash report binary crBt, open source program Sx

• Intermediate Result: generated binary gBs
• Output: buggy binary bBn
According to the brief workflow shown in Figure 5, RoBin

leverages generated binary gBs as an intermediate result to
bridge the crash report binary crBt and open source program
Sx, and finally generates the buggy binary bBn.

¬ Given a piece of crash report binary crBt, we firstly
infer the provenance of compiler Ci, optimization level OLj
and compiler version Vk by the recursive generation step as
R(crBt) = {Ci, OLj , Vk}, where in this work C = {GCC,
Clang}, OL = {O0, O1, O2, O3, Os}, V = {GCC 5.0, GCC
6.0, GCC7.0, GCC 8.0, GCC 9.0, Clang 3.9, Clang 4.0, Clang
5.0, Clang6.0, Clang 7.0}.



With the information of compilation options above, we
can generate a binary gBs = G(Sx, Ci, OLj , Vk) from the
open source program Sx. The similarity of two binaries
Sim(crBt, gBs) exceeds the preset threshold, which indicates
that they are exactly the same except for the program config-
uration(s).  Finally, with the difference Diff(crBt, gBs)
between the binaries and the features F (Sx) captured from
the source code, ® we are able to find the relationships and
infer the setting of configuration(s) Cinfigy = {config1 =
True, config2 = Flase, ...}.

Till this step, we have all of the building configurations
and the source code on hold, ¯ so that we can generate the
buggy binary bBn = G(Sx, Ci, OLj , Vk, Configy). ° And
it is natural to reproduce the vulnerability with the buggy
binary bBn, which can also assist most of the downstream
applications in the security field.

V. SYSTEM DESIGN

Figure 6 delineates the architecture of RoBin. The whole
system contains three major components: Compilation Op-
tions Inference, Configuration Inference and Vulnerability
Reproduction.

To summarize, our work focus on facilitating the reproduc-
tion of configuration-related vulnerabilities by hierarchically
inferring the compilation options and program configurations.

A. Compilation Options Inference

In section III, we summarize some findings from the analy-
sis results. Based on them, we search the compilation options
by the following steps.

¬Whether -O0 or NOT? Firstly, we compile the source
code by default version of GCC (or Clang) separately with
-O0 and -O2. By comparing with the crash report binary,
the similarity produced by BinDiff will tell whether the
provenance of the optimization level is -O0.

Which Compiler? Then, we compile the code separately
by GCC and Clang with the same optimization level produced
by the former step. The one that has a higher similarity with
the crash report binary can tell the provenance of the compiler.

®Optimization Level Confirmation. If the provenance of
the optimization level is -O0, we do not have to go through
this step. Conversely, we generate the binary by the same
compiler and its version with -O1, -O2, O3 to confirm the
right optimization level by the highest similarity.

¯Compiler Version Confirmation. Last but not least,
we confirm the version of the compiler. By comparing the
similarity of neighboring versions, we can finally get all of
the compilation options.

Leading by the steps above, we are feasible to figure out the
specific compilation options from the large search space. Due
to the limitation that the mechanism of BinDiff is rule-based,
we can not guarantee that the generated binary has the full
similarity with the crash report binary. But the binary with a
relatively high similarity is prepared for the next stage.

We take an example to show the procedure. As shown
in Figure 7, we present the process of how to figure out

the provenance of compilation options of xmllint compiled
with compilation options GCC-7-O2. All the percentages in
the figure are the similarity comparison result between the
generated binary and the crash report binary produced by
BinDiff.

In the first step, we confirm ¬whether it is compiled with
-O0. By compiling the source code with the same default
version of Clang (randomly choose the compiler) but different
optimization levels, we can make sure the optimization level
is NOT -O0. Then, we compare the generated binary compiled
with different default compiler. The result indicated the
provenance of the compiler is GCC. Next, by generating the
binary with neighboring optimization levels, we can confirm
the ®exact optimization level -O2. Finally, by listing all
of the candidate compiler versions, we can figure out the
¯specific compiler version. It takes 8 times (we do not re-
peatedly compare binaries with the same compilation options)
of comparison to figure out the options. And the process of
compilation options inference meets an end till now.

B. Binary Diffing

This stage mainly contains three parts. According to Fig-
ure 6, we need go through Binary Diffing, Source Code
Extraction and Bin-Source Mapping to figure out the specific
program configuration(s).

To map the differences from binary to source code, we
firstly leverage IDA Pro [12] and Bindiff [13] to identify
identical and similar functions between the generated binary
and the crash report binary. So the rest of the parts are the
candidates controlled by the program configurations.

Due to the behavior of program configurations is unpre-
dictable, some are ’-enable’ and some are ’-disable’, so the
size of the relationship between the generated binary and the
crash report binary is uncertain, which is presented in Table ??.
To confirm our observation, we investigate our data set. The
result shows three kinds of situation as follows:

• Some functions only appear in the generated binary;
• Some functions only appear in the crash report binary;
• Functions appear in both of them.
Because the size of the crash report is limited to compress

the content, the crash report binary always does not contain
symbolic information. Therefore, we need to position the
differences as much as possible in the generated binary.
According to the situations above, we give different solutions.

For the first situation, we realize those functions are not
compiled into the vulnerable binary or disabled by the con-
figurations. In the subsequent Bin-Source mapping step, the
constraints of these types of functions can be obtained, and
only the logical relationship ’and’ is needed as the connection.
To obtain the final constraints, we only need to reverse
them. However, conflicts may arise during the procedure. Our
strategy is to discard conflict functions. On the one hand,
discarding them has little impact on the result. On the other
hand, conflicts are very rare and almost all of them appear in
function re-definitions. If we do not find any configurations,
it may be a false alarm of BinDiff.
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In the second situation, it is exactly opposite to the first one.
The process is similar to the first situation. The only difference
is that we do not need to reverse the constraint. But we need
to extract features separately from the crash report binary and
source code due to the missing symbolic information of the
crash report binary. After feature matching, a set of constraints
is obtained, and the provenance of program configuration can
be extracted by the solver.

mov rsi, ds:[rbx+8]
mov eax, ds:[rdx+8]
cmp ds:[rsi+8], 0xD
jz 0x6D630

mov eax, ds:[rdx+8]
mov rsi, ds:[rbx+8]
cmp eax, 9
jz 0x6D630

cmp eax, 0xD
jz 0x6D633

cmp eax, 0x9
jz 0x6D658

mov  rsi, rdx
call htmlDocdump
jmp  0x6D619

call htmlNodeDumpFile
jmp  0x6D619

mov  rsi, rdx
call htmlDocdump
jmp  0x6D619

call xmlElemDump
mov  rsi, rdx
call OxD5EC0
jmp  0x521A3

call 0xD5B00

mov  rsi, ds:[rbx+0x28]
mov  edi, 0xA
call .fputc
xor  eax, eax
pop  rbx
retn

mov  rsi, ds:[rbx+0x28]
mov  edi, 0xA
call .fputc
xor  eax, eax
pop  rbx
retn

Fig. 8. Binary Diffing Example of Generated Binary and Crash Report Binary

For the last situation, we continue to detect and highlight
binary differences between two variants of the same function.
We use some fine-grained methods to map those binary
differences to the corresponding source code. If the functions
are exactly the same, we can easily extract and map the
constraints. If the functions are partially matched the rest
partially matched functions, it is due to the different value
of Macros inside the function, which leads to the difference
of internal structures.

To better analyze the result, we take a piece of binary
code from XMLlint and visualize part of the structure of the
generated binary and crash report binary with the help of IDA

Pro and BinDiff.
As shown in Figure 8, the green parts are the base blocks

that exist in both of the binaries, the red parts are the base
blocks that only exist in the generated binary, and the gray part
is the base block that only exists in the crash report binary.

Till now, we have the rough constraints extracted by the diff-
ing result from generated binary and crash report binary. We
still need to map them to the source code, so that we can figure
out the specific program configurations (i.e., configuration
files, macros).

C. Feature Extraction

The exact correspondence between binary and source code
is an open and difficult problem in the security field. So we
come up with the second-best solution. Based on the extraction
result of the binary diffing, we can get the corresponding
source code range. However, it is impossible to determine
which macro-related code fragment in the source code appears
in the crash report binary. In addition, when there are more
than one macros in the source code range, it is challenging
to directly infer the specific configurations from the generated
binary. Therefore, we separately extract the source code frag-
ment features related to the macro and search for the source
code feature in the binary to determine which code fragment
is compiled into the binary. To tackle the problem, we need
to find out some features to assist our work. The ideal feature
needs to be unique and stable. The feature should not appear
multiple times within the specified range, and they should
be stable enough which cannot be affected by the different
compilation options from source code to binary as well.

D. Feature Generator

With the aforementioned features, we add some structural
features if, condition, then branch, and else branch. When
combined with structural features, we can make the semantic
features more unique to improve efficiency.

Source Code Feature Generator. TypeChef has been de-
signed to check for incompatible types and developer errors in
untested configuration combinations. So we leverage TypeChef
to generate a macro AST, called VAST, and extract source code
features from it. Each extracted feature has the constraints of
the features. Binary Feature Generator. We leverage IDA
Pro to extract the features from binaries. If more accurate



information is needed, we will use some procedural analysis
techniques, such as binary function parameters, data streams
to assist us in more precise binary matching.

E. Feature Matching Engine

In the feature matching stage, we start with a coarse-grained
matching strategy for efficiency. When it fails, we complement
it with a fine-grained matching strategy.

Coarse-grained Matching. In the coarse-grained matching,
we mainly consider the simple features, string, constant and
function call. For instance, we directly search a string in
the source code to see whether the corresponding string
information exists in the binary function. If it exists, the match
succeeds. If it fails, we select other features to match again
and come out with the confidence of the feature identification.
Assuming that none of the features are matched successfully,
it can be considered that the code does not exist in the binary.
Furthermore, we can use this strategy to match the function
level. However, this matching strategy is relatively simple and
rough, and some of the segments can not be successfully
matched.

Fine-grained Matching. In case all the rules of coarse-
grained matching fail, we will turn to use a fine-grained match-
ing strategy. Since some features can not be a matching anchor
alone, so we combine them with extra structural features (e.g.,
branch structure, loop structure) to become a more unique
identifier. Such as, if statements in source code correspond
to the instruction cmp in binary code. As shown in Figure
9, if the function foo is considered alone, once the function
call foo can be found more than once in the binary, so it is
not certain whether the macro-related code is compiled into
the binary. But when the combined features are introduced,
considering the features of the if structure, the constraint can
be extracted in the comparison condition, and the function
call foo can be extracted in the statement block. So when we
leverage the context information (i.e., structural feature), the
combined information can be used as the smallest matching
unit to accurately match the functions affected by the macro.

Crash Report Binary

vuln_func:

foo (B)

“hello” (B & A)

“world” (B & !A)

Vuln_func:

foo, “world”

Symbol Extraction Configuration Solver

Fig. 9. Example for the Solver and Matching Engine

F. Solver

By feature extraction and feature matching, we can confirm
whether a code segment controlled by program configura-
tion(s) exists in the target binary (generated binary or crash
report binary). Furthermore, we need to figure out which

program configuration controls the code segment. To infer
the precise configuration(s) of the program, we speculate the
specific values of the program configurations according to
the result of feature matching and the existing condition of
the source code from VAST. Take the case in Figure9 as
an example, feature matching can find the string world in
the binary matches the string in the source code. And there
is a function call foo in the binary, with VAST we can
get the condition of foo’s existence is B, and the existence
condition of the string world is ¬A. Combining the analysis
and matching results of the source code, a satisfactory value
of macros A and B can be obtained by the constraint solver.

G. Vulnerability Reproduction

At this stage, we overcome the challenges mentioned in
the previous sections and infer the compilation options and
program configurations from the crash report binary. With the
source code and the inferred building configurations, we are
not only able to reproduce the failure, but also can precisely
locate the vulnerability. Furthermore, we can leverage the
result to diagnose and patch the vulnerable part.

VI. EVALUATION

A. Procedures and Settings

Due to the inconsistency of CVE and the bug report [3],
[14], only part of the vulnerabilities is crash reports available.
So we simulate the scene to evaluate our work. It will be our
future work that facilitating the reproduction of vulnerabilities
by leveraging limited and incomplete information.
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Fig. 10. Procedure of Evaluation

Evaluation Procedures. As shown in Figure 10, we present
the procedure of setting a simulated scene for our experiment.
Firstly, we divide the experiment candidates into two groups:
Anonymous Users (users for short) and Security Researchers
(researchers for short). Two groups of people are completely
information isolated, which is consistent with what happens
in the real world.

Anonymous users correspond to a variety of users in the
real world. They randomly use the customized compilation
options and set the program configurations according to the
CVE report to compile the source code into a buggy binary.
With the bug trigger, they are able to trigger the specific
vulnerability. Then, they sent the bug report containing the
vulnerable code segment to the researchers.



CVE ID Compilation Options Inference Configruation Inference Reproduction
Version tBuild (s) compilation options TInfer (#) β Config. tExtract(s) Defualt Robin

libxml

CVE-2015-8035 2.9.1 22.67 GCC-7-O0 5 98.22% with-lzma 28.96 7 3
CVE-2017-18258 2.9.6 18.38 GCC-5-O3 7 86.53% with-lzma 33.32 7 3
CVE-2018-9251 2.9.8 19.78 GCC-8-O1 7 95.33% with-lzma 182.17 7 3
CVE-2018-14567 2.9.8 19.24 Clang-6-O1 7 94.60% with-lzma 181.37 7 3

OpenSSL

CVE-2014-3513 1.0.1i 65.28 GCC-5-03 7 73.05% with-srtp 102.19 3 3
CVE-2014-3568 1.0.1i 66.54 GCC-7-O0 5 98.94% no-ssl3 43.68 7 7
CVE-2014-3569 1.0.1i 67.45 Clang-6-O1 7 97.61% no-ssl3 44.52 7 7
CVE-2016-6304 1.1.0 81.16 GCC-8-02 7 95.61% with-ocsp 193.47 3 3

PHP

CVE-2007-1001 5.2.0 109.09 Clang-6-O1 7 87.89% with-gd 184.33 7 3
CVE-2016-6294 7.0.0 308.3 GCC-5-O2 8 87.50% enable-intl 1712.87 7 3
CVE-2016-6297 7.0.0 306.87 Clang-5-O3 7 92.80% enable-zip 1708.22 7 3
CVE-2019-9025 7.3.0 378.53 GCC-6-O0 5 99.13% enable-mbstring 2549.78 7 3
CVE-2019-9638 7.0.0 305.64 GCC-8-O3 6 85.44% enable-exif 1729 7 3
CVE-2019-9641 7.0.0 307.35 Clang-39-O0 6 99.26% enable-exif 1701.33 7 3
CVE-2019-9640 7.0.0 307.21 GCC-7-02 8 97.01% enable-exif 1717.82 7 3
CVE-2019-9639 7.0.0 309.87 GCC-7-O1 8 98.82% enable-exif 1712.34 7 3

proftpd

CVE-2009-3639 1.3.1 9.47 GCC-8-O1 7 99.05% mod tls 17.98 7 3
CVE-2010-4652 1.3.1 8.79 Clang-6-O1 7 98.50% mod sql 18.23 7 3
CVE-2013-4359 1.3.3d 9.41 GCC-6-O2 6 98.70% mod sftp 31.93 7 3
CVE-2015-3306 1.3.5b 10.09 Clang-5-O3 7 98.69% mod copy 39.31 7 3
CVE-2016-3125 1.3.3d 9.45 GCC-5-00 5 97.84% mod tls 32.46 7 3

TABLE I
EVALUATION RESULT OF VULNERABILITIES IN EACH STAGE

When the researchers receive the report, they are able to
process the inference of compilation options and program
configurations. Finally, with all the information and materials
on hold, they can reproduce the failure. What’s more, the result
also can benefit the downstream applications of vulnerability
reproduction, such as, root cause diagnosis, etc.

B. Experiment Result

Compilation Options Inference. Due to the procedure of
our method, we need to recursively generate the binary. To
minimize the time of building each program, we optimized
the search strategy according to the analysis result of binary
similarity.

In this work, we mainly focus on the vulnerabilities com-
piled from GCC and Clang. Firstly, users will customize the
compilation options. With the vulnerability-related program
configurations, they can produce buggy binaries. After con-
firming the vulnerabilities can be triggered, they pack the code
segment into crash reports and send them to the researchers.

At the beginning, researchers randomly set the default op-
tions as gcc-version6.0-O0 or clang-version5.0-O0. They will
leverage the script to automatically figure out the compilation
options guided by the optimized search strategy aforemen-
tioned. The result is shown in Table I. Column 4 denotes the
building time tBuild in seconds, column 5 denotes the options
customized by the users, column 6 denotes the number of
times to generate the binary and compare it with the crash
report binary, and column 7 denotes the confidence β of the
last binary comparison produced by BinDiff. On average, we
need to generate binaries about 6.6 times. In particular, with
about 6 to 7 times of attempts, we can figure out the compiler,
compiler version, and optimization level precisely from the
binary with high confidence.

Overall, the time-consuming tCO of this procedure is calcu-
lated as tCO = tBuild×TInfer, which is in a wide range, from
47.23 seconds to 2478.76 seconds. The consumption of time

is related to the characteristics (e.g., size, complexity, etc.) of
the program. And in this stage, all the customized compilation
options of vulnerabilities are successfully inferred.

Retrieval Program Configuration. After inferring the
compilation options for each program, we retrieve the program
configurations in a more fine-grained way mentioned in the
previous section. According to Table I, column 8 denotes
the vulnerability-related program configurations, and column
9 denotes the consumption of time to extract the features and
map them. We spend most of our time parsing AST (Abstract
Syntax Tree) of the programs. It is under our expectation that
the rest of the processes take less than 20 seconds. The result
also inspires us to improve the speed of parsing AST in future
work.

Configuration-Related Vulnerability Reproduction. With
the inferred compilation options and program configurations
on hold, we are able to reproduce the failures. As shown in the
Table I, column 10 indicates that most of the vulnerabilities
can not be reproduced with default options, and column 11
represents that only 2 of them can not be reproduced with the
assistance of RoBin due to the limited information provided.
Intuitively, RoBin can effectively reproduce the configuration-
related vulnerabilities. Interestingly, 2 vulnerabilities from
OpenSSL can be reproduced with default building config-
urations. But RoBin still can contribute to pinpointing the
vulnerable range in the default program configurations rather
than other options. This ability is not available with other tools.

VII. RELATED WORKS

Vulnerability Reproduction. The reproduction of vulner-
abilities is quite significant to maintain the security of open-
source programs. Some works [3], [11] contribute to inves-
tigating the situation. One work [3] conducted an empirical
analysis of real-world security vulnerabilities with the goal of
quantifying their reproducibility. The presented result indicates
that the vital information for reproduction is always scattered



or missing due to the large gap in expert knowledge between
users and developers.

Compilation Tool-chain Inference. To bridge the gap
between reproduction and developers, various works propose
a different kind of method to identify the provenance of
compilation tool-chain from the binary. Luca [15] tries to infer
the provenance of the compiler by utilizing the graph neural
networks to extract binary features. Bincomp [16] proposes
a hierarchical model to infer the compiler, version, and opti-
mization levels from binary. What’s more, Himalia [17] and
its future work [18] demonstrate the problem of distinguishing
the provenance of optimization levels and make the method
quite precise and efficient.

Vulnerable Code Analysis. Abal [19] presents a qualitative
analysis of the Linux kernel for the researcher. TypeChef [20],
the tool also does variability-aware static analysis of software
systems to detect compile and link-time errors introduced by
the C preprocessor, while Vampyr [21] proposes a static anal-
ysis of kernel drivers. And KConfigReader [22] analyzes the
Linux kernel and transforms it into a newly presented formula.
OSSPATCHER [23] presents a method to build the relations
between OSS variants and their compiled counterparts in
binaries, aiming to figure out the potential vulnerabilities.
During the procedure, OSSPATCHER also tries to figure out
the corresponding program configuration by the source-to-
binary mapping technique.

These works mainly focus on directly analyzing source code
and binary related to the vulnerabilities. In contrast, RoBin
gets the most of the information that causes the program to
crash, trying to facilitate the reproduction of configuration-
related vulnerabilities. We pay more attention to rebuild the
building configurations of the vulnerabilities and try to repro-
duce how the users go from building open source software to
cause the crash. The output materials and information are quite
beneficial for the downstream applications, e.g., root cause
diagnosis, precise source code patch, etc.

VIII. CONCLUSION

In this paper, we present RoBin, a comparison-based ap-
proach to figure out the building configurations to facilitate the
reproduction of configuration-related vulnerabilities. RoBin
can infer the compilation options assisted by BinDiff. Fur-
thermore, we overcome the challenge of inferring the pro-
gram configurations by proposing a source-to-binary mapping
method. Finally, the on-hold materials help to reproduce the
failures and benefit the downstream applications.
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[20] A. Kenner, C. Kästner, S. Haase, and T. Leich, “Typechef: Toward type
checking #ifdef variability in c,” in Proceedings of the 2nd International
Workshop on Feature-Oriented Software Development (FOSD), FOSD
’10, 2010.

[21] A. Ziegler, V. Rothberg, and D. Lohmann, “Analyzing the impact
of feature changes in linux,” in Proceedings of the Tenth Interna-
tional Workshop on Variability Modelling of Software-intensive Systems,
pp. 25–32, 2016.
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