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Abstract
While a core dump carries a large amount of infor-

mation, it barely serves as informative debugging aids
in locating software faults because it carries information
that indicates only a partial chronology of how program
reached a crash site. Recently, this situation has been
significantly improved. With the emergence of hardware-
assisted processor tracing, software developers and secu-
rity analysts can trace program execution and integrate
them into a core dump. In comparison with an ordinary
core dump, the new post-crash artifact provides software
developers and security analysts with more clues as to a
program crash. To use it for failure diagnosis, however, it
still requires strenuous manual efforts.

In this work, we propose POMP, an automated tool to
facilitate the analysis of post-crash artifacts. More specif-
ically, POMP introduces a new reverse execution mecha-
nism to construct the data flow that a program followed
prior to its crash. By using the data flow, POMP then
performs backward taint analysis and highlights those
program statements that actually contribute to the crash.

To demonstrate its effectiveness in pinpointing program
statements truly pertaining to a program crash, we have
implemented POMP for Linux system on x86-32 platform,
and tested it against various program crashes resulting
from 31 distinct real-world security vulnerabilities. We
show that, POMP can accurately and efficiently pinpoint
program statements that truly pertain to the crashes, mak-
ing failure diagnosis significantly convenient.

1 Introduction

Despite the best efforts of software developers, software
inevitably contains defects. When they are triggered, a
program typically crashes or otherwise terminates ab-
normally. To track down the root cause of a software
crash, software developers and security analysts need to
identify those program statements pertaining to the crash,

analyze these statements and eventually figure out why
a bad value (such as an invalid pointer) was passed to
the crash site. In general, this procedure can be signif-
icantly facilitated (and even automated) if both control
and data flows are given. As such, the research on post-
mortem program analysis primarily focuses on finding
out control and data flows of crashing programs. Of
all techniques on postmortem program analysis, record-
and-replay (e.g., [10, 12, 14]) and core dump analysis
(e.g., [16, 26, 36]) are most common.

Record-and-replay is a technique that typically instru-
ments a program so that one can automatically log non-
deterministic events (i. e., the input to a program as well
as the memory access interleavings of the threads) and
later utilize the log to replay the program deterministically.
In theory, this technique would significantly benefit root
cause diagnosis of crashing programs because develop-
ers and security analysts can fully reconstruct the control
and data flows prior to a crash. In practice, it however is
not widely adopted due to the requirement of program in-
strumentation and the high overhead it introduces during
normal operations.

In comparison with record-and-reply, core dump analy-
sis is a lightweight technique for the diagnosis of program
crashes. It does not require program instrumentation, nor
rely upon the log of program execution. Rather, it facil-
itates program failure diagnosis by using more generic
information, i. e., the core dump that an operating system
automatically captures every time a process has crashed.
However, a core dump provides only a snapshot of the
failure, from which core dump analysis techniques can
infer only partial control and data flows pertaining to pro-
gram crashes. Presumably as such, they have not been
treated as the first choice for software debugging.

Recently, the advance in hardware-assisted processor
tracing significantly ameliorates this situation. With the
emergence of Intel PT [6] – a brand new hardware feature
in Intel CPUs – software developers and security ana-
lysts can trace instructions executed and save them in a
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circular buffer. At the time of a program crash, an oper-
ating system includes the trace into a core dump. Since
this post-crash artifact contains both the state of crashing
memory and the execution history, software developers
not only can inspect the program state at the time of the
crash, but also fully reconstruct the control flow that led to
the crash, making software debugging more informative
and efficient.

While Intel PT augments software developers with the
ability of obtaining more informative clues as to a soft-
ware crash, to use it for the root cause diagnosis of soft-
ware failures, it is still time consuming and requires a
lot of manual efforts. As we will discuss in Section 2,
a post-crash artifact1 typically contains a large amount
of instructions. Even though it carries execution history
that allows one to fully reconstruct the control flow that a
crashing program followed – without an automated tool
to eliminate those instructions not pertaining to the fail-
ure – software developers and security analysts still need
to manually examine each instruction in an artifact and
identify those that actually contribute to the crash.

To address this problem, recent research [22] has pro-
posed a technical approach to identify program statements
that pertain to a software failure. Technically speaking,
it combines static program analysis with a cooperative
and adaptive form of dynamic program analysis that uses
Intel PT. While shown to be effective in facilitating failure
diagnosis, particularly those caused by concurrency bugs,
this technique is less likely to be effective in analyzing
crashes resulting from memory corruption vulnerabilities
(e.g. buffer overflow or use after free). This is due to
the fact that a memory corruption vulnerability allows an
attacker to manipulate the control (or data) flow, whereas
the static program analysis heavily relies upon the as-
sumption that program execution does not violate control
nor data flow integrity. Given that the technique proposed
in [22] needs to track data flow using hardware watch-
points in a collaborative manner, this technique is also less
suitable to the situation where program crashes cannot be
easily collected in a crowd-sourcing manner.

In this work, we design and develop POMP, a new auto-
mated tool that analyzes a post-crash artifact and pinpoints
statements pertaining to the crash. Considering that the
control flow of a program might be hijacked and static
analysis is unreliable, the design of POMP is exclusively
on the basis of the information residing in post-crash arti-
facts. In particular, POMP introduces a reverse execution
mechanism which takes as input a post-crash artifact, an-
alyzes the crashing memory and reversely executes the
instructions residing in the artifact. With the support of
this reverse execution, POMP reconstructs the data flow

1By a post-crash artifact, without further specification, we mean a
core dump including both the snapshot of crashing memory and the
instructions executed prior to the crash.

that a program followed prior to its crash, and then utilizes
backward taint analysis to pinpoint the critical instructions
leading up to the crash.

The reverse execution proposed in this work is novel.
In previous research, the design of reverse execution is
under the assumption of the data integrity in crashing
memory [16, 37] or heavily relies upon the capability of
recording critical objects in memory [7–9, 13]. In this
work, considering a software vulnerability might incur
memory corruption and object recording imposes over-
head on normal operations, we relax this assumption and
the ability of data object recording, and introduce a recur-
sive algorithm. To be specific, the algorithm performs the
restoration of memory footprints by constructing the data
flow prior to the crash. In turn, it also employs recovered
memory footprints to improve data flow construction. If
needed, the algorithm also verifies memory aliases and
ensures data flow construction does not introduce errors
or uncertainty. We detail this algorithm in Section 4.

To the best of our knowledge, POMP is the first work
that can recover the data flow prior to a program crash.
Since POMP relies only upon a post-crash artifact, it is
non-intrusive to normal operations and, more importantly,
generally applicable to any settings even though crash
report collection cannot be performed in a cooperative
manner. Last but not least, it should be noted that the
impact of this work is not just restricted to analyzing
the abnormal program termination caused by memory
corruption vulnerabilities. The technique we proposed is
generally applicable to program crashes caused by other
software bugs, such as dereferencing null pointers. We
will demonstrate this capability in Section 6.

In summary, this paper makes the following contribu-
tions.

• We designed POMP, a new technique that analyzes
post-crash artifacts by reversely executing instruc-
tions residing in the artifact.
• We implemented POMP on 32-bit Linux for facili-

tating software developers (or security analysts) to
pinpoint software defects, particularly memory cor-
ruption vulnerabilities.
• We demonstrated the effectiveness of POMP in fa-

cilitating software debugging by using various post-
crash artifacts attributable to 31 distinct real world
security vulnerabilities.

The rest of this paper is organized as follows. Section 2
defines the problem scope of our research. Section 3
presents the overview of POMP. Section 4 and 5 describe
the design and implementation of POMP in detail. Sec-
tion 6 demonstrates the utility of POMP. Section 7 sum-
marizes the work most relevant to ours followed by some
discussion on POMP in Section 8. Finally, we conclude
this work in Section 9.
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1 void test(void){
2 ...
3 }
4
5 int child(int *a){
6 a[0] = 1; // assigning value to var
7 a[1] = 2; // overflow func
8 return 0;
9 }

10
11 int main(){
12 void (*func)(void);
13 int var;
14 func = &test;
15 child(&var);
16 func(); // crash site
17 }

Table 1: A toy example with a stack overflow defect.

2 Problem Scope

In this section, we define the problem scope of our re-
search. We first describe our threat model. Then, we
discuss why failure diagnosis can be tedious and tough
even though a post-crash artifact carries information that
allows software developers to fully reconstruct the control
flow that a program followed prior to its crash.

2.1 Threat Model

In this work, we focus on diagnosing the crash of a pro-
cess. As a result, we exclude the program crashes that do
not incur the unexpected termination of a running process
(e.g., Java program crashes). Since this work diagnoses a
process crash by analyzing a post-crash artifact, we fur-
ther exclude those process crashes that typically do not
produce an artifact. Up to and including Linux 2.2, the de-
fault action for CPU time limit exceeded, for example, is
to terminate the process without a post-crash artifact [3].

As is mentioned above, a post-crash artifact contains
not only the memory snapshot of a crashing program but
also the instructions that the program followed prior to
its crash2. Recall that the goal of this work is to identify
those program statements (i. e., instructions) that actually
pertain to the crash. Therefore, we assume the instruction
trace logged in an artifact is sufficiently long and the
root cause of a program failure is always enclosed. In
other words, we assume a post-crash artifact carries all
the instructions that actually contribute to the crash. We
believe this is a realistic assumption because a software
defect is typically close to a crash site [19, 27, 39] and

2While Intel PT does not log unconditional jumps and linear code,
a full execution trace can be easily reconstructed from the execution
trace enclosed in a post-crash artifact. By an execution trace in a post-
crash artifact, without further specification, we mean a trace including
conditional branch, unconditional jump and linear code.

an operating system can easily allocate a memory region
to store the execution trace from a defect triggered to an
actual crash. Since security analysts may not have the
access to source code of crashing programs and they can
only pinpoint software defects using execution traces left
behind crashes, it should be noted that we do not assume
the source code of the crashing program is available.

2.2 Challenge

As is mentioned earlier, Intel PT records program execu-
tion in a circular buffer. At the time a software defect is
triggered and incurs a crash, the circular buffer has gener-
ally accumulated a large amount of conditional branches.
After the control flow reconstruction from these branches,
a full execution trace may carry more than a billion in-
structions. Even if zooming in the trace from where a fault
is triggered to where a crash occurs, a software developer
(or security analyst) may confront tens of thousands of
instructions. As such, it is tedious and arduous for a
software developer to plow through an execution trace to
diagnose the root cause of a software failure.

In fact, even though an execution trace is short and con-
cise, it is still challenging for commonly-adopted manual
diagnosis strategies (like backward analysis). Here, we
detail this challenge using a toy example shown in Table 1.
As is shown in the table, the program crashes at line
16 due to an overflow that occurs at line 7. After the
crash, an execution trace is left behind in a post-crash
artifact shown in Figure 1. In addition to the trace, the
artifact captures the state of the crashing memory which
is illustrated as the values shown in column T20.

To diagnose the root cause with backward analysis for
the program crash shown in Figure 1, a software developer
or security analyst typically follows through the execution
trace reversely and examines how the bad value in register
eax was passed to the crash site (i. e., instruction A20
shown in Figure 1). In this procedure, his effort can be
prematurely blocked when his analysis reaches instruction
A19. In that instruction mov overwrote register eax
and an inverse operation against this instruction lacks
information to restore its previous value.

To address this problem, one straightforward solution
is to perform forward analysis when backward analysis
reaches a non-invertible instruction. Take instruction A19
for the example. By following a use-define chain, we can
construct a data flow. Then, we can easily observe that
instruction A15 specifies the definition of register eax,
and that definition can reach instruction A19 without any
other intervening definitions. As a result, we can restore
the value in register eax and thus complete the inverse
operation for instruction A19.

While the backward and forward analysis provides se-
curity analysts with an effective method to construct data
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A1: push ebp
A2: mov ebp, esp
A3: sub esp, 0x14
A4: mov [ebp-0xc], test
A5: lea eax, [ebp-0x10]
A6: push eax ;argument of &var
A7: call child
A8: push ebp
A9: mov ebp, esp
A10: mov eax, [ebp+0x8]
A11: mov [eax], 0x1 ;a[0]=1
A12: mov eax, [ebp+0x8]
A13: add eax, 0x4
A14: mov [eax], 0x2 ;a[1]=2
A15: mov eax, 0x0
A16: pop ebp
A17: ret
A18: add esp, 0x4
A19: mov eax, [ebp-0xc]
A20: call eax ;crash site

Time

T20 T19 T18 T17 T16 T15 T14 T13 T12

Re
gi
st
er

eax 0x0002 0x0002 0x0000 0x0000 0x0000 0x0000 0xff1c 0xff1c 0xff18

ebp 0xff28 0xff28 0xff28 0xff28 0xff28 0xff08 0xff08 0xff08 0xff08

esp 0xff14 0xff14 0xff14 0xff10 0xff0c 0xff08 0xff08 0xff08 0xff08

Me
mo
ry
 A

dd
re
ss

0xff1c 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 test test

0xff18 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001

0xff14 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

0xff10 0xff18 0xff18 0xff18 0xff18 0xff18 0xff18 0xff18 0xff18 0xff18

0xff0c A18 A18 A18 A18 A18 A18 A18 A18 A18

0xff08 0xff28 0xff28 0xff28 0xff28 0xff28 0xff28 0xff28 0xff28 0xff28

Execution trace

T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20

Time

Crashing memory Memory footprints reconstructed across time

Figure 1: A post-crash artifact along with the memory footprints recovered by reversely executing the trace enclosed in the artifact.
Note that, for simplicity, all the memory addresses and the value in registers are trimmed and represented with two hex digits. Note
that A18 and test indicate the addresses at which the instruction and function are stored.

flows, this is not sufficient for completing program fail-
ure diagnosis. Again, take for example the execution
trace shown in Figure 1. When backward analysis passes
through instruction A15 and reaches instruction A14,
through forward analysis, a security analyst can quickly
discover that the value in register eax after the execution
of A14 is dependent upon both instruction A12 and A13.
As a result, an instinctive reaction is to retrieve the value
stored in the memory region specified by [ebp+0x8]
shown in instruction A12. However, memory indicated
by [ebp+0x8] and [eax] shown in instruction A14
might be alias of each other. Without an approach to re-
solve memory alias, one cannot determine if the definition
in instruction A14 interrupts the data flow from instruc-
tions A12 and A13. Thus, program failure diagnosis has
to discontinue without an outcome.

3 Overview

In this section, we first describe the objective of this re-
search. Then, we discuss our design principle followed
by the basic idea on how POMP performs postmortem
program analysis.

3.1 Objective
The goal of software failure diagnosis is to identify the
root cause of a failure from the instructions enclosed in
an execution trace. Given a post-crash artifact containing
an execution trace carrying a large amount of instructions
that a program has executed prior to its crash, however,
any instructions in the trace can be potentially attributable

to the crash. As we have shown in the section above, it is
tedious and tough for software developers (or security an-
alysts) to dig through the trace and pinpoint the root cause
of a program crash. Therefore, the objective of this work
is to identify only those instructions that truly contribute
to the crash. In other words, given a post-crash artifact,
our goal is to highlight and present to software developers
(or security analysts) the minimum set of instructions that
contribute to a program crash. Here, our hypothesis is that
the achievement of this goal can significantly reduce the
manual efforts of finding out the root cause of a software
failure.

3.2 Design Principle

To accomplish the aforementioned objective, we de-
sign POMP to perform postmortem analysis on binaries
– though in principle this can be done on a source code
level – in that this design principle can provide software
developers and security analysts with the following bene-
fits. Without having POMP tie to a set of programs written
in a particular programming language, our design prin-
ciple first allows software developers to employ a single
tool to analyze the crashes of programs written in vari-
ous language (e.g., assembly code, C/C++ or JavaScript).
Second, our design choice eliminates the complication
introduced by the translation between source code and
binaries in that a post-crash artifact carries an execution
trace in binaries which can be directly consumed by anal-
ysis at the binary level. Third, with the choice of our
design, POMP can be generally applied to software failure
triage or categorization in which a post-crash artifact is
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the only resource for analysis and the source code of a
crashing program is typically not available [16, 18].

3.3 Technical Approach

As is mentioned earlier in Section 1, it is significantly con-
venient to identify the instructions pertaining to a program
crash if software developers and security analysts can ob-
tain the control and data flows that a program followed
prior to its crash.

We rely on Intel PT to trace the control flow of a pro-
gram and integrate it into the post-crash artifact. PT
is a low-overhead hardware feature in recent Intel pro-
cessors (e.g., Skylake series). It works by capturing in-
formation about software execution on each hardware
thread [6]. The captured information is orgranized in
different types of data packets. Packets about program
flow encodes the transfers of control flow (e.g., targets of
indirect branches and taken/not-taken indications of con-
ditional direct branches). With the control flow transfers
and the program binaries, one is able to fully reconstruct
the trace of executed instructions. Details of our configu-
ration and use with PT are presented in Section 5.

Since a post-crash artifact has already carried the con-
trol flow that a crashing program followed, the main focus
is to reconstruct the data flow from the post-crash artifact
that a crashing program left behind.

To reconstruct the data flow pertaining to a program
failure, POMP introduces a reverse execution mechanism
to restore the memory footprints of a crashing program.
This is due to the fact that the data flow can be easily
derived if machine states prior to a program crash are all
available. In the following, we briefly describe how to
recover memory footprints and build a data flow through
reverse execution, and how to utilize that data flow to
refine instructions that truly pertain to a program crash.

Our reverse execution mechanism is an extension of
the aforementioned forward-and-backward analysis. Not
only does it automate the forward-and-backward analysis,
making the inverse operations for instructions effortless,
but also automatically verifies memory aliases and en-
sures an inverse operation does not introduce errors or
uncertainty.

With this reverse execution mechanism, POMP can eas-
ily restore the machine states prior to the execution of
each instruction. Here, we illustrate this with the example
shown in Figure 1. After reverse execution completes
the inverse operation for instruction A19 through the
aforementioned forward and backward analysis, it can
easily restore the value in register eax and thus the mem-
ory footprint prior to the execution of A19 (see memory
footprint at time T18). With this memory footprint, the
memory footprint prior to instruction A18 can be easily
recovered because arithmetical instructions do not intro-

duce non-invertible effects upon memory (see the memory
footprint at time T17).

Since instruction A17 can be treated as mov eip,
[esp] and then add esp, 0x4, and instruction A16
is equivalent to mov ebp, [esp] and then add
esp, 0x4, reverse execution can further restore mem-
ory footprints prior to their execution by following the
scheme of how it handles mov and arithmetical instruc-
tions above. In Figure 1, we illustrate the memory foot-
prints prior to the execution of both instructions.

Recall that performing an inverse operation for instruc-
tion A15, forward and backward analysis cannot deter-
mine whether the use of [ebp+0x8] specified in instruc-
tion A12 can reach the site prior to the execution of in-
struction A15 because [eax] in A14 and [ebp+0x8]
in A12 might just be different symbolic names that access
data in the same memory location.

To address this issue, one instinctive reaction is to use
the value-set analysis algorithm proposed in [11]. How-
ever, value-set analysis assumes the execution complies
with standard compilation rules. When memory corrup-
tion happens and leads to a crash, these rules are typically
violated and, therefore, value-set analysis is very likely to
be error-prone. In addition, value-set analysis produces
less precise information, not suitable for reverse execu-
tion to verify memory aliases. In this work, we employ
a hypothesis test to verify possible memory aliases. To
be specific, our reverse execution creates two hypotheses,
one assuming two symbolic names are aliases of each
other while the other assuming the opposite. Then, it tests
each of these hypotheses by emulating inverse operations
for instructions.

Let’s continue the example shown in Figure 1. Now,
reverse execution can create two hypotheses, one assum-
ing [eax] and [ebp+0x8] are aliases of each other
while the other assuming the opposite. For the first
hypothesis, after performing the inverse operation for
instruction A15, the information carried by the mem-
ory footprint at T14 would have three constraints, in-
cluding eax = ebp+ 0x8, eax = [ebp+ 0x8] + 0x4 and
[eax] = 0x2. For the second hypothesis, the constraint set
would include eax 6= ebp+0x8, eax = [ebp+0x8]+0x4
and [eax] = 0x2. By looking at the memory footprint at
T14 and examining these two constraint sets, reverse exe-
cution can easily reject the first hypothesis and accept the
second because constraint eax = ebp+ 0x8 for the first
hypothesis does not hold. In this way, reverse execution
can efficiently and accurately recover the memory foot-
print at time T14. After the memory footprint recovery
at T14, reverse execution can further restore earlier mem-
ory footprints using the scheme we discussed above, and
Figure 1 illustrates part of these memory footprints.

With memory footprints recovered, software develop-
ers and security analysts can easily derive the correspond-
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Before After

A19 use: ebp 0xff28

A19 use: [ebp-0xc] 0x0002

A19 use: eax ??

A19 def: eax = [ebp-0xc] 0x0002

A20 use: eax 0x0002

A18 use: esp 0xff10

A18 def: esp = esp+4 0xff14

A19 use: ebp 0xff28

A19 use: [ebp-0xc] 0x0002

A19 use: eax ??

A19 def: eax = [ebp-0xc] 0x0002

A20 use: eax 0x0002

Figure 2: A use-define chain before and after appending new
relations derived from instruction A18. Each node is partitioned
into three cells. From left to right, the cells carry instruction
ID, definition (or use) specification and the value of the variable.
Note that symbol ?? indicates the value of that variable is
unknown.

ing data flow and thus pinpoint instructions that truly
contribute to a crash. In our work, POMP automates this
procedure by using backward taint analysis. To illustrate
this, we continue the aforementioned example and take
the memory footprints shown in Figure 1. As is described
earlier, in this case, the bad value in register eax was
passed through instruction A19 which copies the bad
value from memory [ebp-0xC] to register eax. By
examining the memory footprints restored, POMP can eas-
ily find out that the memory indicated by [ebp-0xC]
shares the same address with that indicated by [eax]
in instruction A14. This implies that the bad value is ac-
tually propagated from instruction A14. As such, POMP
highlights instructions A19 and A14, and deems they
are truly attributable to the crash. We elaborate on the
backward taint analysis in Section 4.

4 Design

Looking closely into the example above, we refine an
algorithm to perform reverse execution and memory foot-
print recovery. In the following, we elaborate on this
algorithm followed by the design detail of our backward
taint analysis.

4.1 Reverse Execution

Here, we describe the algorithm that POMP follows when
performing reverse execution. In particular, our algorithm
follows two steps – use-define chain construction and
memory alias verification. In the following, we elaborate
on them in turn.

4.1.1 Use-Define Chain Construction

In the first step, the algorithm first parses an execution
trace reversely. For each instruction in the trace, it extracts
uses and definitions of corresponding variables based on
the semantics of that instruction and then links them to
a use-define chain previously constructed. For example,
given an initial use-define chain derived from instructions
A20 and A19 shown in Figure 1, POMP extracts the use
and definition from instruction A18 and links them to the
head of the chain (see Figure 2).

As we can observe from the figure, a definition (or
use) includes three elements – instruction ID, use (or def-
inition) specification and the value of the variable. In
addition, we can observe that a use-define relation in-
cludes not only the relations between operands but also
those between operands and those base and index regis-
ters enclosed (see the use and definition for instruction
A19 shown in Figure 2).

Every time appending a use (or definition), our algo-
rithm examines the reachability for the corresponding
variable and attempts to resolve those variables on the
chain. More specifically, it checks each use and defi-
nition on the chain and determines if the value of the
corresponding variable can be resolved. By resolving,
we mean the variable satisfies one of the following con-
ditions – ¬ the definition (or use) of that variable could
reach the end of the chain without any other intervening
definitions; ­ it could reach its consecutive use in which
the value of the corresponding variable is available; ® a
corresponding resolved definition at the front can reach
the use of that variable; ¯ the value of that variable can
be directly derived from the semantics of that instruction
(e.g., variable eax is equal to 0x00 for instruction mov
eax, 0x00).

To illustrate this, we take the example shown in
Figure 2. After our algorithm concatenates definition
def:esp=esp+4 to the chain, where most variables
have already been resolved, reachability examination in-
dicates this definition can reach the end of the chain.
Thus, the algorithm retrieves the value from the post-
crash artifact and assigns it to esp (see the value in cir-
cle). After this assignment, our algorithm further prop-
agates this updated definition through the chain, and at-
tempts to use the update to resolve variables, the values
of which have not yet been assigned. In this case, none
of the definitions and uses on the chain can benefit from
this propagation. After the completion of this propaga-
tion, our algorithm further appends use use:esp and
repeats this process. Slightly different from the process
for definition def:esp=esp+4, for this use, variable
esp is not resolvable through the aforementioned reach-
ability examination. Therefore, our algorithm derives
the value of esp from the semantics of instruction A18
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A11 def: [eax] 0x0001 A12 use: ebp 0xff08

A11 use: [eax] ??

A11 use: eax ??

A10 def: eax ??

A10 use: eax ??

A10 use: [ebp+0x8] ??

A10 use: ebp 0xff08

A9 def: ebp 0xff08

A9 use: ebp ??

A9 use: esp 0xff08

A12 use: [ebp+0x8] ??

A12 use: eax ??

A12 def: eax ??

A13 use: eax ??

A13 def: eax ??

A14 use: eax ??

A14 use: [eax] ??

A14 def: [eax] 0x2

... ... ...

X

D
at

a 
flo

w

D
ata flow

Figure 3: A use-define chain with one intervening tag conser-
vatively placed. The tag blocks the propagation of some data
flows. Note that 7 represents the block of a data flow.

(i. e., esp=esp-4).
During use-define chain construction, our algorithm

also keeps track of constraints in two ways. In one way,
our algorithm extracts constraints by examining instruc-
tion semantics. Take for example instruction A19 and
dummy instruction sequence cmp eax, ebx; ⇒ ja
target; ⇒ inst_at_target . Our algorithm
extracts equality constraint eax=[ebp-0xc] and in-
equality constraint eax>ebx, respectively. In another
way, our algorithm extracts constraints by examining use-
define relations. In particular, ¬ when the definition of a
variable can reach its consecutive use without intervening
definitions, our algorithm extracts a constraint indicat-
ing the variable in that definition shares the same value
with the variable in the use. ­ When two consecutive
uses of a variable encounters no definition in between,
our algorithm extracts a constraint indicating variables
in both uses carry the same value. ® With a variable re-
solved, our algorithm extracts a constraint indicating that
variable equals to the resolved value. The reason behind
the maintenance of these constraints is to be able to per-
form memory alias verification discussed in the following
section.

In the process of resolving variables and propagating
definitions (or uses), our algorithm typically encounters a
situation where an instruction attempts to assign a value
to a variable represented by a memory region but the
address of that region cannot be resolved by using the
information on the chain. For example, instruction A14
shown in Figure 1 represents a memory write, the address
of which is indicated by register eax. From the use-define
chain pertaining to this example shown in Figure 3, we
can easily observe the node with A13 def:eax does
not carry any value though its impact can be propagated
to the node with A14 def:[eax] without any other
intervening definitions.

As we can observe from the example shown in Fig-
ure 3, when this situation appears, a definition like A14
def:[eax] may potentially interrupt the reachability
of the definitions and uses of other variables represented
by memory accesses. For example, given that memory
indicated by [ebp+0x08] and [eax]might be an alias
of each other, definition A14 def:[eax] may block
the reachability of A12 use:[ebp+0x08]. As such,
in the step of use-define chain construction, our algorithm
treats those unknown memory writes as an intervening
tag and blocks previous definitions and uses accordingly.
This conservative design principle ensures that our al-
gorithm does not introduce errors to memory footprint
recovery.

The above forward-and-backward analysis is mainly
designed to discover the use-define reltaions. Other tech-
niques, such as static program slicing [34], can also iden-
tify use-define relations. However, our analysis is novel.
To be specific, our analysis discovers the use-define re-
lations and use them to perform the restoration of mem-
ory footprints. In turn, it leverages recovered memory
footprints to further find use-define relations. This inter-
leaving approach leads more use-define relations to being
identified. Additionally, our analysis conservatively deals
with memory aliases and verifies them in an error-free
manner. This is different from previous techniques that
typically leverage less rigorous methods (e.g., value-set
analysis). More details about how we resolve memory
alias are presented in the next section.

4.1.2 Memory Alias Verification

While the aforementioned design principle prevents intro-
ducing errors to memory footprint recovery, this conser-
vative strategy hinders data flow construction and limits
the capability of resolving variables (see the flow block
and non-recoverable variables shown in Figure 3). As a
result, the second step of our algorithm is to minimize the
side effect introduced by the aforementioned strategy.

Since the conservative design above roots in “undecid-
able” memory alias, the way we tackle the problem is to
introduce a hypothesis test mechanism that examines if a
pair of symbolic names points to the same memory loca-
tion. More specifically, given a pair of symbolic names,
this mechanism makes two hypotheses, one assuming
they are alias of each other and the other assuming the
opposite. Based on the hypotheses, our algorithm ad-
justs the use-define chain as well as constraints accord-
ingly. For example, by assuming [eax] is not aliased
to [ebp+0x8], our algorithm extracts inequility con-
straint eax 6=ebp+0x8 and releases the block shown in
Figure 3, making A12 use:[ebp+0x8] further prop-
agated.

During the propagation, our algorithm walks through
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each of the nodes on the chain and examines if the newly
propagated data flow results in conflicts. Typically, there
are two types of conflicts. The most common is incon-
sistence data dependency in which constraints mismatch
the data propagated from above (e.g., the example dis-
cussed in Section 3). In addition to the conflict commonly
observed, another type of conflict is invalid data depen-
dency in which a variable carries an invalid value that is
supposed to make the crashing program terminate earlier
or follow a different execution path. For example, given
a use-define chain established under a certain hypothe-
sis, the walk-through discovers that a register carries an
invalid address and that invalid value should have the
crashing program terminate at a site ahead of its actual
crash site.

It is indisputable that once a constraint conflict is ob-
served, our algorithm can easily reject the corresponding
hypothesis and deem the pair of symbolic names is alias
(or non-alias) of each other. However, if none of these
hypotheses produce constraint conflicts, this implies that
there is a lack of evidence against our hypothesis test.
Once this situation appears, our algorithm holds the cur-
rent hypothesis and performs an additional hypothesis test.
The reason is that a new hypothesis test may help remove
an additional intervening tag conservatively placed at the
first step, and thus provides the holding test with more
informative evidence to reject hypotheses accordingly.

To illustrate this, we take a simple example shown in
Figure 4. After the completion of the first step, we assume
that our algorithm conservatively treats A2 def:[R2]
and A4 def:[R5] as intervening tags which hinder data
flow propagation. Following the procedure discussed
above, we reversely analyze the trace and make a hy-
pothesis, i. e., [R4] and [R5] are not alias. With this
hypothesis, the data flow between the intervening tags
can propagate through, and our algorithm can examine
conflicts accordingly. Assume that the newly propagated
data flow is insufficient for rejecting our hypothesis. Our
algorithm holds the current hypothesis and makes an ad-
ditional hypothesis, i. e., [R1] and [R2] are not alias of
each other. With this new hypothesis, more data flows
pass through and our algorithm obtains more information
that potentially helps reject hypotheses. It should be noted
that if any of the hypotheses fail to reject, our algorithm
preserves the intervening tags conservatively placed at the
first step.

It is not difficult to spot that our hypothesis test can
be easily extended as a recursive procedure which makes
more hypotheses until they can be rejected. However,
a recursive hypothesis test introduces computation com-
plexity exponentially. In the worse case, when performing
execution reversely, the inverse operation of each instruc-
tion may require alias verification and each verification
may require further alias examination. When this situa-

...

A1: mov R0, [R1] ; R1 = addr1

A2: mov [R2], 0x00 ; R2 = ??

...

...

A3: mov R3, [R4] ; R4 =addr2

A4: mov [R5], 0x08 ; R5 = ??

...

(a) The execution trace.

... ... ... ... ... ...

A2 def: [R2]=0x0 0x00

A2 use: [R2] ??

A2 use: R2 ??

A1 def: R0=[R1] ??

A1 use: R0 ??

A1 use: [R1] ??

A1 use: R1 addr1

... ... ...

A3 use: R4 addr2

A3 use: [R4] ??

A3 use: R3 ??

A3 def: R3=[R4] ??

A4 use R5 ??

A4 use: [R5] ??

A4 def: [R5]=0x8 0x08

... ... ...

D
at

a 
flo

w

X

X

D
ata flow

(b) The use-define chain.

Figure 4: A dummy use-define chain and execution trace with
two pairs of memory aliases. Note that R0,R1, · · ·R5 represent
registers in which the values of R2 and R5 are unknown. Note
that 7 represents the block of a data flow.

tion appears, the algorithm above becomes an impractical
solution. As such, this work empirically forces a hypoth-
esis test to follow at most a recurssion depth of two. As
we will show in Section 6, this setting allows us to per-
form reverse execution not only in an efficient but also
relatively effective manner.

4.1.3 Discussion

During the execution of a program, it might invoke a
system call, which traps execution into kernel space. As
we will discuss in Section 6, we do not set Intel PT to trace
execution in kernel space. As a result, intuition suggests
that the loss of execution tracing may introduce problems
to our reverse execution. However, in practice, a majority
of system calls do not incur modification to registers and
memory in user space. Thus, our reverse execution can
simply ignore the inverse operations for those system calls.
For system calls that potentially influence the memory
footprints of a crashing program, our reverse execution
handles them as follows.

In general, a system call can only influence memory
footprints if it manipulates register values stored by the
crashing program or touches the memory region in user
space. As a result, we treat system calls in different
manners. For system calls that may influence a register
holding a value for a crashing program, our algorithm
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simply introduces a definition on the use-define chain.
For example, system call read overwrites register eax
to hold its return value, and our algorithm appends defi-
nition def:eax=? to the use-define chain accordingly.
Regarding the system calls that manipulate the memory
content in user space (e.g., write and recv), our al-
gorithm checks the memory regions influenced by that
call. To be specific, it attempts to identify the starting
address as well as the size of that memory region by using
the instructions executed prior to that call. This is due
to the fact that the starting address and size are typically
indicated by arguments which are handled by those in-
structions prior to the call. Following this procedure, if
our algorithm identifies the size of that memory region, it
appends definitions to the chain accordingly. Otherwise,
our algorithm treats that system call as an intervening tag
which blocks the propagation through that call3. The rea-
son behind this is that a non-deterministic memory region
can potentially overlap with any memory regions in user
space.

4.2 Backward Taint Analysis

Recall that the goal of this work is to pinpoint instruc-
tions truly pertaining to a program crash. In Section 3,
we briefly introduce how backward taint analysis plays
the role in achieving this goal. Here, we describe more
details.

To perform backward taint analysis, POMP first identi-
fies a sink. In general, a program crash results from two
situations – executing an invalid instruction or derefer-
encing an invalid address. For the first situation, POMP
deems the program counter (eip) as a sink because exe-
cuting an invalid instruction indicates eip carries a bad
value. For the second situation, POMP treats a general
register as a sink because it holds a value which points to
an invalid address. Take the example shown in Figure 1.
POMP treats register eax as a sink in that the program
crash results from retrieving an invalid instruction from
the address held by register eax.

With a sink identified, POMP taints the sink and per-
forms taint propagation backward. In the procedure of
this backward propagation, POMP looks up the aforemen-
tioned use-define chain and identifies the definition of the
taint variable. The criteria of this identification is to en-
sure the definition could reach the taint variable without
any other intervening definitions. Continue the exam-
ple above. With sink eax serving as the initial taint
variable, POMP selects A19 def:eax=[ebp-0xc]
on the chain because this definition can reach taint vari-
able eax without intervention.

3Note that an intervening tag placed by a system call blocks only
definitions and uses in which a variable represents a memory access
(e.g., def:[eax] or use:[ebp]).

From the definition identified, POMP parses that def-
inition and passes the taint to new variables. Since any
variables enclosed in a definition could potentially cause
the corruption of the taint variable, the variables which
POMP selects and passes the taint to include all operands,
base and index registers (if available). For example, by
parsing definition A19 def:eax=[ebp-0xc], POMP
identifies variables ebp and [ebp-0xc], and passes the
taint to both of them. It is not difficult to note that such a
taint propagation strategy can guarantee POMP does not
miss the root cause of a program crash though it over-
taints some variables that do not actually contribute to the
crash. In Section 6, we evaluate and discuss the effect of
the over-tainting.

When passing a taint to a variable indicated by a mem-
ory access (e.g., [R0]), it should be noted that POMP may
not be able to identify the address corresponding to the
memory (e.g., unknown R0 for variable [R0]). Once this
situation appears, therefore, POMP halts the taint propaga-
tion for that variable because the taint can be potentially
propagated to any variables with a definition in the form
of def:[Ri] (where Ri is a register).

Similar to the situation seen in reverse execution, when
performing taint propagation backward, POMP may en-
counter a definition on the chain which intervenes the
propagation. For example, given a taint variable [R0]
and a definition def:[R1] with R1 unknown, POMP can-
not determine whether R0 and R1 share the same value
and POMP should pass the taint to variable [R1]. When
this situation appears, POMP follows the idea of the afore-
mentioned hypothesis test and examines if both variables
share the same address. Ideally, we would like to re-
solve the unknown address through a hypothesis test so
that POMP can pass that taint accordingly. However, in
practice, the hypothesis test may fail to reject. When “fail-
to-reject” occurs, therefore, POMP over-taints the variable
in that intervening definition. Again, this can ensure that
POMP does not miss the enclosure of root cause.

5 Implementation

We have implemented a prototype of POMP for Linux 32-
bit system with Linux kernel 4.4 running on an Intel i7-
6700HQ quad-core processor (a 6th-generation Skylake
processor) with 16 GB RAM. Our prototype consists of
two major components – ¬ a sub-system that implements
the aforementioned reverse execution and backward taint
analysis and ­ a sub-system that traces program execu-
tion with Intel PT. In total, our implementation carries
about 22,000 lines of C code which we will make publicly
available at https://github.com/junxzm1990/pomp.git. In
the following, we present some important implementation
details.
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Following the design description above, we imple-
mented 65 distinct instruction handlers to perform re-
verse execution and backward taint analysis. Along with
these handlers, we also built core dump and instruction
parsers on the basis of libelf [2] and libdisasm [1],
respectively. Note that for instructions with the same se-
mantics (e.g., je, jne, and jg) we dealt with their inverse
operations in one unique handler. To keep track of con-
straints and perform verification, we reuse the Z3 theorem
prover [5, 17].

To allow Intel PT to log execution in a correct and
reliable manner, we implemented the second sub-system
as follows. We enabled Intel PT to run in the Table of
Physical Addresses (ToPA) mode, which allows us to
store PT packets in multiple discontinuous physical mem-
ory areas. We added to the ToPA an entry that points to
a 16 MB physical memory buffer. In our implementa-
tion, we use this buffer to store packets. To be able to
track if the buffer is fully occupied, we clear the END bit
and set the INT bit. With this setup, Intel PT can signal
a performance-monitoring interrupt at the moment the
buffer is fully occupied. Considering the interrupt may
have a skid, resulting in a potential loss in PT packets,
we further allocated a 2 MB physical memory buffer to
hold those packets that might be potentially discarded. In
the ToPA, we introduced an additional entry to refer this
buffer.

At the hardware level, Intel PT lacks the capability of
distinguishing threads within each process. As a result,
we also intercepted the context switch. With this, our
system is able to examine the threads switched in and
out, and stores PT packets for threads individually. To
be specific, for each thread that software developers and
security analysts are interested in, we allocated a 32MB
circular buffer in its user space. Every time a thread is
switched out, we migrated PT packets stored in the afore-
mentioned physical memory buffers to the corresponding
circular buffer in user space. After migration, we also
reset the corresponding registers and make sure the physi-
cal memory buffers can be used for holding packets for
other threads of interest. Note that our empirical experi-
ment indicates the aforementioned 16 MB buffer cannot
be fully occupied between consecutive context switch,
and POMP does not have the difficulty in holding all the
packets between the switch.

Considering the Intel CPU utilizes Supervisor Mode
Access Prevention (SMAP) to restrict the access from
kernel to user space, our implementation toggles SMAP
between packet migration. In addition, we configured In-
tel PT to exclude packets irrelevant to control flow switch-
ing (e.g., timing information) and paused its tracing when
execution traps into kernel space. In this way, POMP is
able to log an execution trace sufficiently long. Last but
not least, we introduced new resource limit PT_LIMIT

into the Linux kernel. With this, not only can software
developers and security analysts select which processes
to trace but also configure the size of the circular buffer
in a convenient manner.

6 Evaluation

In this section, we demonstrate the utility of POMP using
the crashes resulting from real-world vulnerabilities. To
be more specific, we present the efficiency and effective-
ness of POMP, and discuss those crashes that POMP fails
to handle properly.

6.1 Setup
To demonstrate the utility of POMP, we selected 28 pro-
grams and benchmarked POMP with their crashes result-
ing from 31 real-world PoCs obtained from Offensive
Security Exploit Database Archive [4]. Table 2 shows
these crashing programs and summarizes the correspond-
ing vulnerabilities. As we can observe, the programs se-
lected cover a wide spectrum ranging from sophisticated
software like BinUtils with lines of code over 690K
to lightweight software such as stftp and psutils
with lines of code less than 2K.

Regarding vulnerabilities resulting in the crashes, our
test corpus encloses not only memory corruption vulnera-
bilities (i. e., stack and heap overflow) but also common
software defects like null pointer dereference and invalid
free. The reason behind this selection is to demonstrate
that, beyond memory corruption vulnerabilities, POMP
can be generally applicable to other kinds of software
defects.

Among the 32 PoCs, 11 of them perform code injection
(e.g., nginx-1.4.0), one does return-to-libc attack
(aireplay-ng-1.2b3), and another one exploits via
return-oriented-programming (mcrypt-2.5.8). These
exploits crashed the vulnerable program either because
they did not consider the dynamics in the execution
environments (e.g., ASLR) or they mistakenly polluted
critical data (e.g., pointers) before they took over the
control flow. The remaining 18 PoCs are created
to simply trigger the defects, such as overflowing a
stack buffer with a large amount of random characters
(e.g., BinUtils-2.15) or causing the execution to use
a null pointer (e.g., gdb-7.5.1). Crashes caused by
these PoCs are similar to those occured during random
exercises.

6.2 Experimental Design
For each program crash shown in Table 2, we performed
manual analysis with the goal of finding out the minimum
set of instructions that truly contribute to that program
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Program Vulnerability Diagnose Results
Name Size(LoC) CVE-ID Type Trace

length
Size of
mem (MB)

# of
taint

Ground
truth

Mem addr
unknown

Root
cause

Time

coreutils-8.4 138135 2013-0222 Stack overflow 50 56.61 3 2 1 3 1 sec
coreutils-8.4 138135 2013-0223 Stack overflow 90 59.66 2 2 0 3 1 sec
coreutils-8.4 138135 2013-0221 Stack overflow 92 120.95 3 2 0 3 1 sec
mcrypt-2.5.8 37439 2012-4409 Stack overflow 315 0.59 3 2 3 3 3 sec
BinUtils-2.15 697354 2006-2362 Stack overflow 867 0.37 16 7 0 3 1 sec
unrtf-0.19.3 5039 NA Stack overflow 895 0.34 7 4 10 3 1 min
psutils-p17 1736 NA Stack overflow 3123 0.34 7 3 28 3 4 min
stftp-1.1.0 1559 NA Stack overflow 3651 0.39 29 6 15 3 4 min
nasm-0.98.38 33553 2004-1287 Stack overflow 4064 0.58 3 2 4 3 44 sec
libpng-1.2.5 33681 2004-0597 Stack overflow 6026 0.35 6 2 86 3 5 min
putty-0.66 90165 2016-2563 Stack overflow 7338 0.45 4 2 21 3 30 min
Unalz-0.52 8546 2005-3862 Stack overflow 10905 0.40 14 10 7 3 30 sec
LaTeX2rtf-1.9 14473 2004-2167 Stack overflow 17056 0.37 11 5 122 3 8 min
aireplay-ng-1.2b3 62656 2014-8322 Stack overflow 18569 0.59 2 2 223 7 7 min
corehttp-0.5.3a 914 2007-4060 Stack overflow 25385 0.32 19 6 0 3 52 min
gas-2.12 595504 2005-4807 Stack overflow 25713 4.17 3 2 346 3 40 min
abc2mtex-1.6.1 4052 NA Stack overflow 29521 0.33 12 2 12 3 1 min
LibSMI-0.4.8 80461 2010-2891 Stack overflow 50787 0.33 46 5 730 3 4 sec
gif2png-2.5.2 1331 2009-5018 Stack overflow 70854 0.51 49 4 396 3 46 min
O3read-0.03 932 2004-1288 Stack overflow 78244 0.32 7 2 20 3 15 min
unrar-3.9.3 17575 NA Stack overflow 102200 2.43 33 5 1033 3 6 hour
nullhttp-0.5.0 1849 2002-1496 Heap overflow 141 0.54 3 2 0 3 1 sec
inetutils-1.8 98941 NA Heap overflow 28720 0.40 237 7 111 3 14 min
nginx-1.4.0 100255 2013-2028 Integer overflow 158 0.62 11 4 0 3 1 sec
Python-2.2 416060 2007-4965 Integer overflow 3426 0.89 31 7 117 3 3 min
0verkill-0.16 16361 2006-2971 Integer overflow 10494 4.27 1 NA 0 7 2 sec
openjpeg-2.1.1 169538 2016-7445 Null pointer 67 0.37 10 5 5 3 1 sec
gdb-7.5.1 1651764 NA Null pointer 2009 2.94 23 2 79 3 1sec
podofo-0.9.4 60147 2017-5854 Null pointer 42165 0.65 7 4 80 3 2 min
Python-2.7 906829 NA Use-after-free 551 2.14 6 1 0 3 0.17 sec
poppler-0.8.4 183535 2008-2950 Invalid free 672 1.39 16 4 0 3 13 sec

Table 2: The list of program crashes resulting from various vulnerabilities. CVE-ID specifies the ID of the CVEs. Trace length
indicates the lines of instructions that POMP reversely executed. Size of mem shows the size of memory used by the crashed
program (with code sections excluded). # of taint and Ground truth describe the lines of instructions automatically
pinpointed and manually identified, respectively. Mem addr unknown illustrates the amount of memory locations, the addresses
of which are unresolvable.

crash. We took our manual analysis as ground truth and
compared them with the output of POMP. In this way,
we validated the effectiveness of POMP in facilitating
failure diagnosis. More specifically, we compared the
instructions identified manually with those pinpointed by
POMP. The focuses of this comparison include ¬ examin-
ing whether the root cause of that crash is enclosed in the
instruction set POMP automatically identified, ­ investi-
gating whether the output of POMP covers the minimum
instruction set that we manually tracked down, and ®
exploring if POMP could significantly prune the execution
trace that software developers (or security analysts) have
to manually examine.

In order to evaluate the efficiency of POMP, we
recorded the time it took when spotting the instructions
that truly pertain to each program crash. For each test
case, we also logged the instructions that POMP reversely
executed in that this allows us to study the relation be-
tween efficiency and the amount of instructions reversely
executed.

Considering pinpointing a root cause does not require
reversely executing the entire trace recorded by Intel PT,
it is worth of noting that, we selected and utilized only a
partial execution trace for evaluation. In this work, our
selection strategy follows an iterative procedure in which
we first introduced instructions of a crashing function
to reverse execution. If this partial trace is insufficient
for spotting a root cause, we traced back functions previ-
ously invoked and then included instructions function-by-
function until that root cause can be covered by POMP.

6.3 Experimental Results

We show our experimental results in Table 2. Except
for test cases 0verkill and aireplay-ng, we ob-
serve, every root cause is included in a set of instructions
that POMP pinpointed. Through a comparison mentioned
above, we also observe each set encloses the correspond-
ing instructions we manually identified (i. e., ground
truth). These observations indicate that POMP is effective
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in locating instructions that truly contribute to program
crashes.

In comparison with instructions that POMP needs to
reversely execute, we observe, the instructions eventu-
ally tainted are significantly less. For example, backward
analysis needs to examine 10,905 instructions in order
to pinpoint the root cause for crashing program Unalz,
whereas POMP highlights only 14 instructions among
which half of them truly pertain to the crash. Given that
backward taint analysis mimics how a software developer
(or security analyst) typically diagnoses the root cause of
a program failure, this observation indicates that POMP
has a great potential to reduce manual efforts in failure
diagnosis.

Except for test case coreutils, an instruction set
produced by POMP generally carries a certain amount
of instructions that do not actually contribute to crashes.
Again, take Unalz for example. POMP over-tainted 7
instructions and included them in the instruction set it
identified. In the usage of POMP, while this implies a
software developer needs to devote additional energies to
those instructions not pertaining to a crash, this does not
mean that POMP is less capable of finding out instructions
truly pertaining to a crash. In fact, compared with hun-
dreds and even thousands of instructions that one had to
manually walk through in failure diagnosis, the additional
effort imposed by over-tainting is minimal and negligible.

Recall that in order to capture a root cause, the design
of POMP taints all variables that possibly contribute to the
propagation of a bad value. As our backward taint analy-
sis increasingly traverses instructions, it is not difficult to
imagine that, an increasing number of variables might be
tainted which causes instructions corresponding to these
variables are treated as those truly pertaining to program
crashes. As such, we generally observe more instructions
over-tainted for those test cases, where POMP needs to
reversely execute more instructions in order to cover the
root causes of their failures.

As we discuss in Section 4, ideally, POMP can employ
a recursive hypothesis test to perform inverse operations
for instructions that carry unknown memory access. Due
to the concern of computation complexity, however, we
limit the recursion in at most two depths. As such, reverse
execution leaves behind a certain amount of unresolvable
memory. In Table 2, we illustrate the amount of memory
the addresses of which remain unresolvable even after a
2-depth hypothesis test has been performed. Surprisingly,
we discover POMP can still effectively spot instructions
pertaining to program crashes even though it fails to re-
cover a certain amount of memory. This implies that our
design reasonably balances the utility of POMP as well as
its computation complexity.

Intuition suggests that the amount of memory unresolv-
able should correlate with the number of instructions that

POMP reversely executes. This is because the effect of
an unresolvable memory might be propagated as more in-
structions are involved in reverse execution. While this is
generally true, an observation from test case corehttp
indicates a substantially long execution trace does not al-
ways necessarily amplify the influence of unknown mem-
ory access. With more instructions reversely executed,
POMP may obtain more evidence to reject the hypotheses
that it fail to determine, making unknown memory access
resolvable. With this in mind, we speculate POMP is not
only effective in facilitating failure diagnosis perhaps also
helpful for executing substantially long traces reversely.
As a future work, we will therefore explore this capability
in different contexts.

In Table 2, we also illustrate the amount of time that
POMP took in the process of reverse execution and back-
ward taint analysis. We can easily observe POMP typically
completes its computation in minutes and the time it took
is generally proportional to the number of instructions
that POMP needs to reversely execute. The reason be-
hind this observation is straightforward. When reverse
execution processes more instructions, it typically encoun-
ters more memory aliases. In verifying memory aliases,
POMP needs to perform hypothesis tests which are slightly
computation-intensive and time-consuming.

With regard to test case aireplay-ng in which
POMP fails to facilitate failure diagnosis, we look closely
to instructions tainted as well as those reversely executed.
Prior to the crash of aireplay-ng, we discover the
program invoked system call sys_read which writes a
data chunk to a certain memory region. Since both the
size of the data chunk and the address of the memory
are specified in registers, which reverse execution fails
to restore, POMP treats sys_read as a “super” interven-
ing tag that blocks the propagation of many definitions,
making the output of POMP less informative to failure
diagnosis.

Different from aireplay-ng, the failure for
0verkill results from an insufficient PT log. As is
specified in Table 2, the vulnerability corresponding to
this case is an integer overflow. To trigger this security
loophole, the PoC used in our experiment aggressively
accumulates an integer variable which makes a PT log
full of arithmetic computation instructions but not the
instruction corresponding to the root cause. As such, we
observe POMP can taint only one instruction pertaining to
the crash. We believe this situation can be easily resolved
if a software developer (or security analyst) can enlarge
the capacity of the PT buffer.

7 Related Work

This research work mainly focuses on locating software
vulnerability from its crash dump. Regarding the tech-
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niques we employed and the problems we addressed, the
lines of works most closely related to our own include
reverse execution and postmortem program analysis. In
this section, we summarize previous studies and discuss
their limitation in turn.

Reverse execution. Reverse execution is a conventional
debugging technique that allows developers to restore the
execution state of a program to a previous point. Pioneer-
ing research [7–9, 13] in this area relies upon restoring
a previous program state from a record, and thus their
focus is to minimize the amount of records that one has
to save and maintain in order to return a program to a
previous state in its execution history. For example, the
work described in [7–9] is mainly based on regenerating
a previous program state. When state regeneration is not
possible, however, it recovers a program state by state
saving.

In addition to state saving, program instrumentation is
broadly used to facilitate the reverse execution of a pro-
gram. For example, Hou et al. designed compiler frame-
work Backstroke [21] to instrument C++ program in
a way that it can store program states for reverse exe-
cution. Similarly, Sauciuc and Necula [30] proposed to
use an SMT solver to navigate an execution trace and
restore data values. Depending on how the solver per-
forms on constraint sets corresponding to multiple test
runs, the technique proposed automatically determines
where to instrument the code to save intermediate values
and facilitate reverse execution.

Given that state saving requires extra memory space
and program instrumentation results in a slower forward
execution, recent research proposes to employ a core
dump to facilitate reverse execution. In [16] and [37],
new reverse execution mechanisms are designed in which
the techniques proposed reversely analyzes code and then
utilizes the information in a core dump to reconstruct the
states of a program prior to its crash. Since the effective-
ness of these techniques highly relies upon the integrity
of a core dump, and exploiting vulnerabilities like buffer
overflow and dangling pointers corrupts memory informa-
tion, they may fail to perform reverse execution correctly
when memory corruption occurs.

Different from the prior research works discussed
above, the reverse execution technique introduced in this
paper follows a completely different design principle, and
thus it provides many advantages. First, it can reinstate a
previous program state without restoring that state from a
record. Second, it does not require any instrumentation
to a program, making it more generally applicable. Third,
it is effective in performing execution backward even
though the crashing memory snapshot carries corrupted
data.

Postmortem program analysis. Over the past decades,

there is a rich collection of literature on using program
analysis techniques along with crash reports to identify
faults in software (e.g., [15, 20, 24, 25, 28, 29, 32, 38]).
These existing techniques are designed to identify some
specific software defects. In adversarial settings, an at-
tacker exploits a variety of software defects and thus they
cannot be used to analyze a program crash caused by a
security defect such as buffer overflow or unsafe dangling
pointer. For example, Manevich et al. [24] proposed
to use static backward analysis to reconstruct execution
traces from a crash point and thus spot software defects,
particularly typestate errors [33]. Similarly, Strom and
Yellin [32] defined a partially path-sensitive backward
dataflow analysis for checking typestate properties, specif-
ically uninitialized variables. While demonstrated to be
effective, these two studies only focus on specific types-
tate problems.

Liblit et al. proposed a backward analysis technique for
crash analysis [23]. To be more specific, they introduce
an efficient algorithm that takes as input a crash point
as well as a static control flow graph, and computes all
the possible execution paths that lead to the crash point.
In addition, they discussed how to narrow down the set
of possible execution paths using a wide variety of post-
crash artifacts, such as stack traces. As is mentioned
earlier, memory information might be corrupted when
attackers exploit a program. The technique described
in [23] highly relies upon the integrity of the informa-
tion resided in memory, and thus fails to analyze program
crash resulting from malicious memory corruption. In this
work, we do not infer program execution paths through
the stack traces recovered from memory potentially cor-
rupted. Rather, our approach identifies the root cause
of software failures by reversely executing program and
reconstructing memory footprints prior to the crash.

Considering the low cost of capturing core dumps, prior
studies also proposed to use core dumps to analyze the
root cause of software failures. Of all the works along this
line, the most typical ones include CrashLocator [35],
!analyze [18] and RETracer [16] which locate soft-
ware defects by analyzing memory information resided
in a core dump. As such, these techniques are not
suitable to analyze crashes resulting from malicious
memory corruption. Different from these techniques,
Kasikci et al. introduced Gist [22], an automated de-
bugging technique that utilizes off-the-shelf hardware to
enhance core dump and then employs a cooperative debug-
ging technique to perform root cause diagnosis. While
Gist demonstrates its effectiveness on locating bugs
from a software crash, it requires the collection of crashes
from multiple parties running the same software and suf-
fering the same bugs. This could significantly limit its
adoption. In our work, we introduce a different technical
approach which can perform analysis at the binary level
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without the participation of other parties.
In recent research, Xu et al. [36] introduced CREDAL,

an automatic tool that employs the source code of a crash-
ing program to enhance core dump analysis and turns a
core dump to an informative aid in tracking down mem-
ory corruption vulnerabilities. While sharing a common
goal as POMP– pinpointing the code statements where a
software defect is likely to reside – CREDAL follows a
completely different technical approach. More specifi-
cally, CREDAL discovers the mismatch in variable values
and deems the code fragments corresponding to the mis-
match as the possible vulnerabilities that lead to the crash.
While it has been shown that CREDAL is able to assist soft-
ware developers (or security analysts) in tracking down
a memory corruption vulnerability, in most cases, it still
requires significant manual efforts for locating a memory
corruption vulnerability in a crash for the reasons that
the mismatch in variable values may be overwritten or
the code fragments corresponding to mismatch may not
include the root cause of the software crash. In this work,
POMP precisely pinpoints the vulnerability by utilizing
the memory footprints recovered from reverse execution.

8 Discussion

In this section, we discuss the limitations of our current
design, insights we learned and possible future directions.

Multiple threads. POMP focuses only on analyzing the
post-crash artifact produced by a crashing thread. There-
fore, we assume the root cause of the crash is enclosed
within the instructions executed by that thread and other
threads do not intervene the execution of that thread prior
to its crash. In practice, this assumption however may
not hold, and the information held in a post-crash artifact
may not be sufficient and even misleading for root cause
diagnosis.

While this multi-thread issue indeed limits the capabil-
ity of a security analyst using POMP to pinpoint the root
cause of a program crash, this does not mean the failure of
POMP nor significantly downgrades the utility of POMP
because of the following. First, a prior study [31] has
already indicated that a large fraction of software crashes
involves only the crashing thread. Thus, we believe POMP
is still beneficial for software failure diagnosis. Second,
the failure of POMP roots in incomplete execution trac-
ing. Therefore, we believe, by simply augmenting our
process tracing with the capability of recording the timing
of execution, POMP can synthesize a complete execution
trace, making POMP working properly. As part of the
future work, we will integrate this extension into the next
version of POMP.

Just-in-Time native code. Intel PT records the addresses
of branching instructions executed. Using these addresses

as index, POMP retrieves instructions from executable and
library files. However, a program may utilize Just-in-
Time (JIT) compilation in which binary code is generated
on the fly. For programs assembled with this JIT func-
tionality (e.g., JavaScript engine), POMP is less likely to
be effective, especially when a post-crash artifact fails to
capture the JIT native code mapped into memory.

To make POMP handle programs in this type, in the fu-
ture, we will augment POMP with the capability of tracing
and logging native code generated at the run time. For ex-
ample, we may monitor the executable memory and dump
JIT native code accordingly. Note that this extension does
not require any re-engineering of reverse execution and
backward taint analysis because the limitation to JIT na-
tive code also results from incomplete execution tracing
(i. e., failing to reconstruct all the instructions executed
prior to a program crash).

9 Conclusion

In this paper, we develop POMP on Linux system to an-
alyze post-crash artifacts. We show that POMP can sig-
nificantly reduce the manual efforts on the diagnosis of
program failures, making software debugging more infor-
mative and efficient. Since the design of POMP is entirely
on the basis of the information resided in a post-crash
artifact, the technique proposed can be generally applied
to diagnose the crashes of programs written in various
programming languages caused by various software de-
fects.

We demonstrated the effectiveness of POMP using the
real-world program crashes pertaining to 31 software vul-
nerabilities. We showed that POMP can reversely recon-
struct the memory footprints of a crashing program and
accurately identify the program statements (i. e., , instruc-
tions) that truly contribute to the crash. Following this
finding, we safely conclude POMP can significantly down-
size the program statements that a software developer (or
security analyst) needs to manually examine.
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