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Abstract

Today’s software systems are increasingly relying on the
“power of the crowd” to identify new security vulnera-
bilities. And yet, it is not well understood how repro-
ducible the crowd-reported vulnerabilities are. In this
paper, we perform the first empirical analysis on a wide
range of real-world security vulnerabilities (368 in total)
with the goal of quantifying their reproducibility. Fol-
lowing a carefully controlled workflow, we organize a
focused group of security analysts to carry out reproduc-
tion experiments. With 3600 man-hours spent, we ob-
tain quantitative evidence on the prevalence of missing
information in vulnerability reports and the low repro-
ducibility of the vulnerabilities. We find that relying on a
single vulnerability report from a popular security forum
is generally difficult to succeed due to the incomplete
information. By widely crowdsourcing the information
gathering, security analysts could increase the reproduc-
tion success rate, but still face key challenges to trou-
bleshoot the non-reproducible cases. To further explore
solutions, we surveyed hackers, researchers, and engi-
neers who have extensive domain expertise in software
security (N=43). Going beyond Internet-scale crowd-
sourcing, we find that, security professionals heavily rely
on manual debugging and speculative guessing to infer
the missed information. Our result suggests that there is
not only a necessity to overhaul the way a security fo-
rum collects vulnerability reports, but also a need for au-
tomated mechanisms to collect information commonly
missing in a report.

∗Work was done while visiting The Pennsylvania State University.

1 Introduction

Security vulnerabilities in software systems are posing a
serious threat to users, organizations and even nations. In
2017, unpatched vulnerabilities allowed the WannaCry
ransomware cryptoworm to shutdown more than 300,000
computers around the globe [24]. Around the same time,
another vulnerability in Equifax’s Apache servers led to
a devastating data breach that exposed half of the Amer-
ican population’s Social Security Numbers [48].

Identifying security vulnerabilities has been increas-
ingly challenging. Due to the high complexity of mod-
ern software, it is no longer feasible for in-house teams
to identify all possible vulnerabilities before a software
release. Consequently, an increasing number of soft-
ware vendors have begun to rely on “the power of the
crowd” for vulnerability identification. Today, anyone
on the Internet (e.g., white hat hackers, security analysts,
and even regular software users) can identify and report a
vulnerability. Companies such as Google and Microsoft
are spending millions of dollars on their “bug bounty”
programs to reward vulnerability reporters [38, 54, 41].
To further raise community awareness, the reporter may
obtain a Common Vulnerabilities and Exposures (CVE)
ID, and archive the entry in various online vulnerability
databases. As of December 2017, the CVE website has
archived more than 95,000 security vulnerabilities.

Despite the large number of crowd-reported vulnera-
bilities, there is still a major gap between vulnerability
reporting and vulnerability patching. Recent measure-
ments show that it takes a long time, sometimes multiple
years, for a vulnerability to be patched after the initial
report [43]. In addition to the lack of awareness, anec-
dotal evidence also asserts the poor quality of crowd-
sourced reports. For example, a Facebook user once
identified a vulnerability that allowed attackers to post
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messages onto anyone’s timeline. However, the initial
report had been ignored by Facebook engineers due to
“lack of enough details to reproduce the vulnerability”,
until the Facebook CEO’s timeline was hacked [18].

As more vulnerabilities are reported by the crowd, the
reproducibility of the vulnerability becomes critical for
software vendors to quickly locate and patch the prob-
lem. Unfortunately, a non-reproducible vulnerability is
more likely to be ignored [53], leaving the affected sys-
tem vulnerable. So far, related research efforts have pri-
marily focused on vulnerability notifications, and gener-
ating security patches [26, 35, 43, 45]. The vulnerability
reproduction, as a critical early step for risk mitigation,
has not been well understood.

In this paper, we bridge the gap by conducting the
first in-depth empirical analysis on the reproducibility
of crowd-reported vulnerabilities. We develop a series
of experiments to assess the usability of the information
provided by the reporters by actually attempting to re-
produce the vulnerabilities. Our analysis seeks to answer
three specific questions. First, how reproducible are the
reported vulnerabilities using only the provided informa-
tion? Second, what factors have made certain vulnera-
bilities difficult to reproduce? Third, what actions could
software vendors (and the vulnerability reporters) take to
systematically improve the efficiency of reproduction?

Assessing Reproducibility. The biggest challenge is
that reproducing a vulnerability requires almost exclu-
sively manual efforts, and requires the “reproducer” to
have highly specialized knowledge and skill sets. It is
difficult for a study to achieve both depth and scale at
the same time. To these ends, we prioritize depth while
preserving a reasonable scale for generalizable results.
More specifically, we focus on memory error vulnerabil-
ities, which are ranked among the most dangerous soft-
ware errors [7] and have caused significant real-world
impacts (e.g., Heartbleed, WannaCry). We organize a fo-
cused group of highly experienced security researchers
and conduct a series of controlled experiments to repro-
duce the vulnerabilities based on the provided informa-
tion. We carefully design a workflow so that the repro-
duction results reflect the value of the information in the
reports, rather than the analysts’ personal hacking skills.

Our experiments demanded 3600 man-hours to finish,
covering a dataset of 368 memory error vulnerabilities
(291 CVE cases and 77 non-CVE cases) randomly sam-
pled from those reported in the last 17 years. For CVE
cases, we crawled all the 4,694 references (e.g., technical
reports, blogs) listed on the CVE website as information
sources for the reproduction. We consider these refer-
ences as the crowd-sourced vulnerability reports which
contain the detailed information for vulnerability repro-
duction. We argue that the size of the dataset is reason-

ably large. For example, prior works have used reported
vulnerabilities to benchmark their vulnerability detection
and patching tools. Most datasets are limited to less than
10 vulnerabilities [39, 29, 40, 46, 25], or at the scale of
tens [55, 56, 27, 42], due to the significant manual efforts
needed to build ground truth data.

We have a number of key observations. First, in-
dividual vulnerability reports from popular security fo-
rums have an extremely low success rate of reproduction
(4.5% – 43.8%) caused by missing information. Second,
a “crowdsourcing” approach that aggregates information
from all possible references help to recover some but not
all of the missed fields. After information aggregation,
95.1% of the 368 vulnerabilities still missed at least one
required information field. Third, it is not always the
most commonly missed information that foiled the re-
production. Most reports did not include details on soft-
ware installation options and configurations (87%+), or
the affected operating system (OS) (22.8%). While such
information is often recoverable using “common sense”
knowledge, the real challenges arise when the vulner-
ability reports missed the Proof-of-Concept (PoC) files
(11.7%) or, more often, the methods to trigger the vul-
nerability (26.4%). Based on the aggregated informa-
tion and common sense knowledge, only 54.9% of the
reported vulnerabilities can be reproduced.

Recovering the missed information is even more chal-
lenging given the limited feedback on “why a system did
not crash”. To recover the missing information, we iden-
tified useful heuristics through extensive manual debug-
ging and troubleshooting, which increased the reproduc-
tion rate to 95.9%. We find it helpful to prioritize test-
ing the information fields that are likely to require non-
standard configurations. We also observe useful correla-
tions between “similar” vulnerability reports, which can
provide hints to reproduce the poorly documented ones.
Despite these heuristics, we argue that significant man-
ual efforts could have been saved if the reporting system
required a few mandated information fields.

Survey. To validate our observations, we surveyed
external security professionals from both academia and
industry1. We received 43 valid responses from 10 dif-
ferent institutions, including 2 industry labs, 6 academic
groups and 2 Capture The Flag (CTF) teams. The survey
results confirmed the prevalence of missing information
in vulnerability reports, and provided insights into com-
mon ad-hoc techniques used to recover missing informa-
tion.

Data Sharing. To facilitate future research, we will
share our fully tested and annotated dataset of 368 vul-

1Our study received the approval from our institutions’ IRB
(#STUDY00008566).
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nerabilities (291 CVE and 77 non-CVE)2. Based on the
insights obtained from our measurements and user study,
we create a comprehensive report for each case where
we filled in the missing information, attached the cor-
rect PoC files, and created an appropriate Docker Im-
age/File to facilitate a quick reproduction. This can serve
as a much needed large-scale evaluation dataset for re-
searchers.

In summary, our contributions are four-fold:

• First, we perform the first in-depth analysis on the re-
producibility of crowd-reported security vulnerabili-
ties. Our analysis covers 368 real-world memory error
vulnerabilities, which is the largest benchmark dataset
to the best of our knowledge.

• Second, our results provide quantitative evidence on
the poor reproducibility, due to the prevalence of miss-
ing information, in vulnerability reports. We also
identify key factors which contribute to reproduction
failures.

• Third, we conduct a user study with real-world secu-
rity researchers from 10 different institutions to vali-
date our findings, and provide suggestions on how to
improve the vulnerability reproduction efficiency.

• Fourth, we share our full benchmark dataset of repro-
ducible vulnerabilities (which took 3000+ man-hours
to construct).

2 Background and Motivations

We start by introducing the background of security vul-
nerability reporting and reproduction. We then proceed
to describe our research goals.

Security Vulnerability Reporting. In the past decade,
there has been a successful crowdsourcing effort from
security professionals and software users to report and
share their identified security vulnerabilities. When peo-
ple identify a vulnerability, they can request a CVE ID
from CVE Numbering Authorities (i.e., MITRE Corpo-
ration). After the vulnerability can be publicly released,
the CVE ID and corresponding vulnerability information
will be added to the CVE list [5]. The CVE list is sup-
plied to the National Vulnerability Database (NVD) [14]
where analysts can perform further investigations and
add additional information to help the distribution and re-
production. The Common Vulnerability Scoring System
(CVSS) also assigns “severity scores” to vulnerabilities.

CVE Website and Vulnerability Report. The CVE
website [5] maintains a list of known vulnerabilities that
have obtained a CVE ID. Each CVE ID has a web page

2Dataset release: https://github.com/VulnReproduction/

LinuxFlaw

with a short description about the vulnerability and a list
of external references. The short description only pro-
vides a high-level summary. The actual technical details
are contained in the external references. These refer-
ences could be constituted by technical reports, blog/-
forum posts, or sometimes a PoC. It is often the case,
however, that the PoC is not available and the reporter
only describes the vulnerability, leaving the task of craft-
ing PoCs to the community.

There are other websites that often act as “external
references” for the CVE pages. Some websites primar-
ily collect and archive the public exploits and PoC files
for known vulnerabilities (e.g., ExploitDB [9]). Other
websites directly accept vulnerability reports from users,
and support user discussions (e.g., Redhat Bugzilla [16],
OpenWall [15]). Websites such as SecurityTracker [20]
and SecurityFocus [21] aim to provide more complete
and structured information for known vulnerabilities.

Memory Error Vulnerability. A memory error vul-
nerability is a security vulnerability that allows attack-
ers to manipulate in-memory content to crash a program
or obtain unauthorized access to a system. Memory
error vulnerabilities such as “Stack Overflows”, “Heap
Overflows”, and “Use After Free”, have been ranked
among the most dangerous software errors [7]. Popu-
lar real-world examples include the Heartbleed vulnera-
bility (CVE-2014-0160) that affected millions of servers
and devices running HTTPS. A more recent example is
the vulnerability exploited by the WannaCry cryptoworm
(CVE-2017-0144) which shut down 300,000+ servers
(e.g., those in hospitals and schools) around the globe.
Our paper primarily focuses on memory error vulnera-
bilities due to their high severity and real-world impact.

Vulnerability Reproduction. Once a security vul-
nerability is reported, there is a constant need for people
to reproduce the vulnerability, especially highly critical
ones. First and foremost, developers and vendors of the
vulnerable software will need to reproduce the reported
vulnerability to analyze the root causes and generate se-
curity patches. Analysts from security firms also need to
reproduce and verify the vulnerabilities to assess the cor-
responding threats to their customers and facilitate threat
mitigations. Finally, security researchers often rely on
known vulnerabilities to benchmark and evaluate their
vulnerability detection and mitigation techniques.

Our Research Questions. While existing works fo-
cus on vulnerability identification and patches [53, 26,
35, 43, 45], there is a lack of systematic understanding
of the vulnerability reproduction problem. Reproducing
a vulnerability is a prerequisite step when diagnosing and
eliminating a security threat. Anecdotal evidence sug-
gests that vulnerability reproduction is extremely labor-
intensive and time-consuming [18, 53]. Our study seeks
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to provide a first in-depth understanding of reproduc-
tion difficulties of crowd-reported vulnerabilities while
exploring solutions to boost the reproducibility. Using
the memory error vulnerability reports as examples, we
seek to answer three specific questions. First, how repro-
ducible are existing security vulnerability reports based
on the provided information? Second, what are root
causes that contribute to the difficulty of vulnerability re-
production? Third, what are possible ways to systemat-
ically improve the efficiency of vulnerability reproduc-
tion?

3 Methodology and Dataset

To answer these questions, we describe our high-level
approach and collect the dataset for our experiments.

3.1 Methodology Overview

Our goal is to systemically measure the reproducibility of
existing security vulnerability reports. There are a num-
ber of challenges to perform this measurement.

Challenges. The first challenge is that reproducing
a vulnerability based on existing reports requires almost
exclusively manual efforts. All the key steps of reproduc-
tion (e.g., reading the technical reports, installing the vul-
nerable software, and triggering and analyzing the crash)
are different for each case, and thus cannot be automated.
To analyze a large number of vulnerability reports in
depth, we are required to recruit a big group of analysts to
work full time for months; this is an unrealistic expecta-
tion. The second challenge is that successful vulnerabil-
ity reproduction may also depend on the knowledge and
skills of the security analysts. In order to provide a reli-
able assessment, we need to recruit real domain experts
to eliminate the impact of the incapacity of the analysts.

Approaches. Given the above challenges, it is diffi-
cult for our study to achieve both depth and scale at the
same time. We decide to prioritize the depth of the anal-
ysis while maintaining a reasonable scale for generaliz-
able results. More specifically, we select one severe type
of vulnerability (i.e., memory error vulnerability), which
allows us to form a focused group of domain experts to
work on the vulnerability reproduction experiments. We
design a systematic procedure to assess the reproducibil-
ity of the vulnerability based on available information
(instead of the hacking skills of the experts). In addition,
to complement our empirical measurements, we conduct
a user study with external security professionals from
both academia and industry. The latter will provide us
with their perceptions towards existing vulnerability re-
ports and the reproduction process. Finally, we combine

Dataset Vulnerability PoCs All Refs Valid Refs
CVE 291 332 6,044 4,694
Non-CVE 77 80 0 0
Total 368 412 6,044 4,694

Table 1: Dataset overview.

the results of the first two steps to discuss solutions to fa-
cilitate efficient vulnerability reproduction and improve
the usability of current vulnerability reports.

3.2 Vulnerability Report Dataset
For our study, we gather a large collection of reported
vulnerabilities from the past 17 years. In total, we col-
lect two datasets including a primary dataset of vulnera-
bilities with CVE IDs, and a complementary dataset for
vulnerabilities that do not yet have a CVE ID (Table 1).

We focus on memory error vulnerabilities due to their
high severity and significant real-world impact. In ad-
dition to the famous examples such as Heartbleed, and
WannaCry, there are more than 10,000 memory error
vulnerabilities listed on the CVE website. We crawled
the pages of the current 95K+ entries (2001 – 2017) and
analyzed their severity scores (CVSS). Our result shows
that the average CVSS score for memory error vulner-
abilities is 7.6, which is clearly higher than the overall
average (6.2), confirming their severity.

Defining Key Terms. To avoid confusion, we define
a few terms upfront. We refer to the web page of each
CVE ID on the CVE website as a CVE entry. In each
CVE entry’s reference section, the cited websites are re-
ferred as information source websites or simply source
websites. The source websites provide detailed technical
reports on each vulnerability. We consider these techni-
cal reports on the source websites as the crowd-sourced
vulnerability reports for our evaluation.

Primary CVE Dataset. We first obtain a random
sample of 300 CVE entries [5] on memory error vul-
nerabilities in Linux software (2001 to 2017). We focus
on Linux software for two reasons. First, reproducing
a vulnerability typically requires the source code of the
vulnerable software (e.g., compilation options may af-
fect whether the binary is vulnerable). The open-sourced
Linux software and Linux kernel make such analysis
possible. As a research group, we cannot analyze closed-
sourced software (e.g., most Windows software), but the
methodology is generally applicable (i.e., software ven-
dors have access to their own source code). Second,
Linux-based vulnerabilities have a high impact. Most en-
terprise servers, data center nodes, supercomputers, and
even Android devices run Linux [8, 57].

From the 300 CVE entries, we obtain 291 entries
where the software has the source code. In the past
17 years, there have been about 10,000 CVE entries on
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Figure 1: Vulnerability type.
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Figure 2: # of vulnera-
bilities over time.

memory error vulnerabilities and about 2,420 are related
to Linux software 3. Our sampling rate is about 12%.

For each CVE entry, we collect the references directly
listed in the References section and also iteratively in-
clude references contained within the direct references.
Out of the total 6,044 external reference links, 4,694 web
pages were still available for crawling. In addition, we
collect the proof-of-concept (PoC) files for each CVE ID
if the PoCs are attached in the vulnerability reports. Cer-
tain CVE IDs have multiple PoCs, representing different
ways of exploiting the vulnerability.

Complementary Non-CVE Dataset. Since some en-
tities may not request CVE IDs for the vulnerabilities
they identified, we also obtain a small sample of vulner-
abilities that do not yet have a CVE ID. In this way, we
can enrich and diversify our vulnerability reports. Our
non-CVE dataset is collected from ExploitDB [9], the
largest archive for public exploits. At the time of writing,
there are about 1,219 exploits of memory error vulnera-
bilities in Linux software listed on ExploitDB. Of these,
316 do not have a CVE ID. We obtain a random sample
of 80 vulnerabilities; 77 of them have their source code
available and are included in our dataset.

Justifications on the Dataset Size. We believe the
368 memory error vulnerabilities (291 on CVE, about
12% of coverage) form a reasonably large dataset. To
better contextualize the size of the dataset, we reference
recent papers that use vulnerabilities on the CVE list to
evaluate their vulnerability detection/patching systems.
Most of the datasets are limited to less than 10 vulnera-
bilities [39, 34, 32, 30, 33, 25, 46, 40, 29], while only a
few larger studies achieve a scale of tens [55, 56]. The
only studies that can scale well are those which focus on
the high-level information in the CVE entries without the
need to perform any code analysis or vulnerability veri-
fications [43].

Preliminary Analysis. Our dataset covers a diverse
set of memory error vulnerabilities, 8 categories in to-
tal as shown in Figure 1. We obtained the vulnerability

3We performed direct measurements instead of using 3rd-party
statistics (e.g., cvedetails.com). 3rd-party websites often mix mem-
ory error vulnerabilities with other bigger categories (e.g., “overflow”).

Retrieve software 
name, version, 

and PoC

Install vulnerable 
software
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operating system
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vulnerability 

report(s)

Con�gure 
vulnerable 
software

 Attempt to 
trigger the 

vulnerability

Verify existence 
of vulnerability

CVE ID/
Non-CVE ID

Report Gathering Environment Setup Software Preparation Reproduction

Figure 3: Workflow of reproducing a vulnerability.

types from the CVE entry’s description or its references.
The vulnerability type was further verified during the re-
production. Stack Overflow and Heap Overflow are the
most common types. The Invalid Free category includes
both “Use After Free” and “Double Free”. The Other
category covers a range of other memory related vulner-
abilities such as “Uninitialized Memory” and “Memory
Leakage”. Figure 2 shows the number of vulnerabili-
ties in different years. We divide the vulnerabilities into
6 time bins (five 3-year periods and one 2-year period).
This over-time trend of our dataset is relatively consistent
with that of the entire CVE database [23].

4 Reproduction Experiment Design

Given the vulnerability dataset, we design a systematic
procedure to measure its reproducibility. Our experi-
ments seek to identify the key information fields that con-
tribute to the success of reproduction while measuring
the information fields that are commonly missing from
existing reports. In addition, we examine the most pop-
ular information sources cited by the CVE entries and
their contributions to the reproduction.

4.1 Reproduction Workflow

To assess the reproducibility of a vulnerability, we de-
sign a workflow, which delineates vulnerability repro-
duction as a 4-stage procedure (see Figure 3). At the
report gathering stage, a security analyst collects reports
and sources tied to a vulnerability. At the environment
setup stage, he identifies the target version(s) of a vulner-
able software, finds the corresponding source code (or bi-
nary), and sets up the operating system for that software.
At the software preparation stage, the security analyst
compiles and installs the vulnerable software by follow-
ing the compilation and configuration options given in
the report or software specification. Sometimes, he also
needs to ensure the libraries needed for the vulnerable
software are correctly installed. At the vulnerability re-
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Type of PoC Default Action
Shell commands Run the commands with the default shell
Script program (e.g., python) Run the script with the appropriate interpreter
C/C++ code Compile code with default options and run it
A long string Directly input the string to the vulnerable program
A malformed file (e.g., jpeg) Input the file to the vulnerable program

Table 2: Default trigger method for proof-of-concept (PoC) files.

Building System Default Commands
automake make; make install
autoconf & ./configure; make;
automake make install
cmake mkdir build; cd build;

cmake ../; make; make install

Table 3: Default install commands.

production stage, he triggers and verifies the vulnerabil-
ity by using the PoC provided in the vulnerability report.

In our experiment, we restrict security analysts to fol-
low this procedure, and use only the instructions and ref-
erences tied to vulnerability reports. In this way, we can
objectively assess the quality of the information in exist-
ing reports, making the results not (or less) dependent on
the personal hacking ability of the analysts.

4.2 The Analyst Team

We have formed a strong team of 5 security analysts
to carry out our experiment. Each analyst not only has
in-depth knowledge of memory error vulnerabilities, but
also has first-hand experience analyzing vulnerabilities,
writing exploits, and developing patches. The analysts
regularly publish at top security venues, have rich CTF
experience, and have discovered and reported over 20
new vulnerabilities–which are listed on the CVE web-
site. In this way, we ensure that the analysts are able
to: understand the information in the reports and follow
the pre-defined workflow to generate reliable results. To
provide the “ground-truth reproducibility”, the analysts
work together to reproduce as many vulnerabilities as
possible. If a vulnerability cannot be reproduced by one
analyst, other analysts will try again.

4.3 Default Settings

Ideally, a vulnerability report should contain all the nec-
essary information for a successful reproduction. In
practice, however, the reporters may assume that the re-
ports will be read by security professionals or software
engineers, and thus certain “common sense” information
can be omitted. For example, if a vulnerability does not
rely on special configuration options, the reporter might
believe it is unnecessary to include software installation
details in the report. To account for this, we develop a
set of default settings when corresponding details are not
available in the original report. We set the default set-
tings as a way of modeling the basic knowledge of soft-
ware analysis.

• Vulnerable Software Version. This information is
the “must-have” information in a report. Exhaustively

guessing and validating the vulnerable version is ex-
tremely time-consuming; this is an unreasonable bur-
den for the analysts. If the version information is
missing, we regard the reproduction as a failure.

• Operating System. If not explicitly stated, the default
OS will be a Linux system that was released in (or
slightly before) the year when the vulnerability was
reported. This allows us to build the software with the
appropriate dependencies.

• Installation & Configuration. We prioritize compil-
ing using the source code of the vulnerable program.
If the compilation and configuration parameters are
not provided, we install the package based on the de-
fault building systems specified in software package
(see Table 3). Note that we do not introduce any extra
compilation flags beyond those required for installa-
tion.

• Proof-of-Concept (PoC). Without a PoC, the vulner-
ability reproduction will be regarded as a failed at-
tempt because it is extremely difficult to infer the PoC
based on the vulnerability description alone.

• Trigger Method for PoC. If there is a PoC without
details on the trigger method, we attempt to infer it
based on the type of the PoC. Table 2 shows those
default trigger methods tied to different PoC types.

• Vulnerability Verification. A report may not spec-
ify the evidence of a program failure pertaining to the
vulnerability. Since we deal with memory error vul-
nerabilities, we deem the reproduction to be success-
ful if we observe the unexpected program termination
(or program “crash”).

4.4 Controlled Information Sources
For a given CVE entry, the technical details are typi-
cally available in the external references. We seek to
examine the quality of the information from different
sources. More specifically, we select the most cited
websites across CVE entries and attempt to reproduce
the vulnerability using the information from individual
sources alone. This allows us to compare the quality of
information from different sources. We then combine all
the sources of information to examine the actual repro-
ducibility.
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Exp. Setting CVE Reproduction (N=291) Vulnerability Reports for CVE w/ Missing Information
Covered Succeed Overall Software Software Software OS PoC Trigger Vulnerability
CVE IDs # (%) Rate (%) Version Install. Config. Info. File Method Verification

SecurityFocus 256 32 (12.6%) 11.0% 9 255 233 116 131 210 227
Redhat Bugzilla 195 19 (9.7%) 6.5% 48 195 179 0 154 168 147
ExploitDB 156 46 (29.5%) 15.8% 5 155 137 132 20 100 111
OpenWall 153 67 (43.8%) 23.0% 28 152 140 153 72 72 71
SecurityTracker 89 4 (4.5%) 1.4% 3 87 71 73 69 62 61
Combined-top5 287 126 (43.9%) 43.3% 3 284 259 55 70 125 138
Combined-all 291 182 (62.5%) 62.5% 1 280 256 52 17 82 106

Exp. Setting Non-CVE Reproduction (N=77) Vulnerability Reports for Non-CVE w/ Missing Information
Combined-all 77 20 (25.6%) 25.6% 0 70 67 32 26 15 26

Table 4: Statistics of the reproduction results. The overall rate is calculated using the total number of CVE entries
(291) and non-CVE entries (77) as the base respectively.

The top 5 referenced websites in our dataset are: Secu-
rityFocus, Redhat Bugzilla, ExploitDB, OpenWall, and
SecurityTracker. Table 4 shows the number of CVE IDs
each source website covers in our dataset. Collectively,
287 out of 291 CVE entries (98.6%) have cited at least
one of the top 5 source websites. To examine the im-
portance of these 5 source websites to the entire CVE
database, we analyzed the full set of 95K CVE IDs. We
show that these 5 websites are among the top 10 mostly
cited websites, covering 71,358 (75.0%) CVE IDs.

Given a CVE entry, we follow the aforementioned
workflow, and conduct 3 experiments using different in-
formation sources:

• CVE Single-source. We test the information from
each of the top 5 source websites one by one (if the
website is cited). To assess the quality of the informa-
tion only within the report, we do not use any infor-
mation which is not directly available on the source
website (849 experiments). That is, we do not use in-
formation contained in external references.

• CVE Combined-top5. We examine the combined in-
formation from all the 5 source websites. Similar to
the single-source setting, we do not follow their exter-
nal links (287 experiments).

• CVE Combined-all. Finally, we combine all the in-
formation contained: in the original CVE entry, in
the direct references, and in the references contained
within the direct references (291 experiments).

Non-CVE entries typically do not contain references.
We do not perform the controlled analysis. Instead,
we directly run “combined-all” experiments (77 exper-
iments). In total, our security analysts run 1504 experi-
ments to complete the study procedure.

5 Measurement Results

Next, we describe our measurement results with a focus
on the time spent on the vulnerability reproduction, the

reproduction success rate, and the key contributing fac-
tors to the reproduction success.

5.1 Time Spent
The three experiments take 5 security analysts about
1600 man-hours to finish. On average, each vulnerability
report for CVE cases takes about 5 hours for all the pro-
posed tests, and each vulnerability report for non-CVE
cases takes about 3 hours. Based on our experience, the
most time-consuming part is to set up the environment
and compile the vulnerable software with the correct op-
tions. For vulnerability reports without a usable PoC, it
takes even more time to read the code in the PoC files and
test different trigger methods. After combining all the
available information and applying the default settings,
we successfully reproduced 202 out of 368 vulnerabili-
ties (54.9%).

5.2 Reproducibility
Table 4 shows the breakdown of the reproduction results.
We also measured the level of missing information in the
vulnerability reports and the references. We calculate
two key metrics: the true success rate and the overall
success rate. The true success rate is the ratio of the
number of successfully reproduced vulnerabilities over
the number of vulnerabilities that a given information
source covers. The overall success rate takes the cov-
erage of the given information source into account. It is
the ratio of the successful cases over the total number of
vulnerabilities in our dataset. If a vulnerability has mul-
tiple PoCs associated to it, as long as one of the PoCs
turns out to be successful, we regard this vulnerability as
reproducible. Based on Table 4, we have four key obser-
vations.

First, the single-source setting returns a low true suc-
cess rate and even a lower overall success rate. OpenWall
has the highest true success rate (43.8%) as we found a
number of high-quality references that documented the
detailed instructions. However, OpenWall only covers
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Missing Succeeded Failed All
Information (202) (166) (368)

Software version 0 (0.0%) 1 (0.6%) 1 (0.3%)
PoC file 0 (0.0%) 43 (25.9%) 43 (11.7%)

Trigger method 14 (6.9%) 83 (50.0% ) 97 (26.4%)
OS info. 35 (17.3%) 49 (29.5%) 84 (22.8%)

Verif. method 45 (22.3%) 87 (52.4%) 132 (35.8%)
Software config. 190 (94.1%) 133 (80.1%) 323 (87.7%)
Software Install. 195 (96.5%) 155 (93.4%) 350 (95.1%)

Table 5: Missing information for the combined-all set-
ting for all vulnerability reports (CVE and non-CVE).
All the missing information in the “succeeded” cases
were correctly recovered by the default setting.

153 CVE IDs which lowers its overall success rate to
23.0%. Contrarily, SecurityFocus and Redhat Bugzilla
cover more CVE IDs (256 and 195) but have much lower
true success rates (12.6% and 9.7%). Particularly, Secu-
rityFocus mainly summarizes the vulnerabilities but the
information does not directly help the reproduction. Ex-
ploitDB falls in the middle, with a true success rate of
29.5% on 156 CVE IDs. SecurityTracker has the lowest
coverage and true success rate.

Second, combining the information of the top 5 web-
sites has clearly improved the true success rate (43.9%).
The overall success rate also improved (43.3%), since the
top 5 websites collectively cover more CVE IDs (287 out
of 291). The significant increases in both rates suggest
that each information source has its own unique contribu-
tions. In other words, there is relatively low redundancy
between the 5 source websites.

Third, we can further improve the overall success rate
to 62.5% by iteratively reading through all the refer-
ences. To put this effort into the context, combined-top5
involves reading 849 referenced articles, and combined-
all involves significantly more articles to read (4,694).
Most articles are completely unstructured (e.g., techni-
cal blogs), and it takes extensive manual efforts to ex-
tract the useful information. To the best of our knowl-
edge, it is still an open challenge for NLP algorithms
to accurately interpret the complex logic in technical re-
ports [60, 52, 44]. Our case is more challenging due to
the prevalence of special technical terms, symbols, and
even code snippets mixed in unstructured English text.

Finally, for the 77 vulnerabilities without CVE ID, the
success rate is 25.6%, which is lower compared to that
of all the CVE cases (combined-all). Recall that non-
CVE cases are contributed by the ExploitDB website. If
we only compare it with the CVE cases from ExploitDB,
the true success rate is more similar (29.5%). After we
aggregate the results for both CVE and non-CVE cases,
the overall success rate is only 54.9%. Considering the
significant efforts spent on each case, the result indicates
poor usability and reproducibility in crowdsourced vul-
nerability reports.

5.3 Missing Information

We observe that it is extremely common for vulnerability
reports to miss key information fields. On the right side
of Table 4, we list the number of CVE IDs that missed
a given piece of information. We show that individual
information sources are more likely to have incomplete
information. In addition, combining different informa-
tion sources helps retrieve missing pieces, particularly
PoC files, trigger methods, and OS information.

In Table 5, we combine all the CVE and non-CVE en-
tries and divide them into two groups: succeeded cases
(202) and failed cases (166). Then we examine the miss-
ing information fields for each group with the combined-
all setting. We show that even after combining all the
information sources, at least 95.1% of the 368 vulnera-
bilities still missed one required information field. Most
reports did not include details on software installation
options and configurations (87%+), or the affected OS
(22.8%); these information are often recoverable us-
ing “common sense” knowledge. Fewer vulnerabilities
missed PoC files (11.7%) or methods to trigger the vul-
nerability (26.4%).

Missing information vs. Reproducibility. We ob-
serve that successful cases do not necessarily have com-
plete information. More than 94% of succeeded cases
missed the software installation and configuration in-
structions; 22.3% of the succeeded cases missed the in-
formation on the verification methods, and 17.3% missed
the operating system information. The difference be-
tween the successful and the failed cases is that the miss-
ing information of the succeeded cases can be resolved
by the “common-sense” knowledge (i.e., the default set-
tings). On the other hand, if the vulnerable software ver-
sion, PoC files or the trigger method are missing, then
the reproduction is prone to failure. Note that for failed
cases, it is not yet clear which information field(s) are the
root causes (detailed diagnosis in the next section).

5.4 Additional Factors

In addition to the completeness of information in the re-
ports, we also explore other factors correlated to the re-
production success. In the following, we break down the
results based on the types and severity levels of vulnera-
bilities, the complexity of the affected software, and the
time factor.

Vulnerability Type. In Figure 4, we first break down
the reproduction results by vulnerability type. We find
that Stack Overflow vulnerabilities are most difficult to
reproduce with a reproduction rate of 40% or lower. Re-
call that Stack Overflow is also the most common vulner-
abilities in our dataset (Figure 1). Vulnerabilities such as
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Figure 4: Reproduction success rate vs. the vulnerabil-
ity type.
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Figure 5: Reproduction success rate vs. the severity of
the vulnerability (measured by CVSS score).
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Figure 6: Reproduction success rate vs. the program
size (measured by the number of lines of code).
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Figure 7: Reproduction success rate over time.

Format String are easier to reproduce with a reproduction
rate above 70%.

Vulnerability Severity. Figure 5 shows how the sever-
ity of the reported vulnerabilities correlate with the re-
producibility. The results shows that highly severe vul-
nerabilities (CVSS score >8) are more difficult to repro-
duce. The results may have some correlation with the
vulnerability types, since severe vulnerabilities are of-
ten related to Stack Overflow or Invalid Free. Based on
our experience, such vulnerabilities often require specific
triggering conditions that are different from the default
settings.

Project Size. Counter-intuitively, vulnerabilities of
simpler software (or smaller project) are not necessar-
ily easier to reproduce. As shown in Figure 6, soft-
ware with less than 1,000 lines of code have a very low
reproduction rate primarily due to a lack of compre-
hensive reports and poor software documentation. On
the other hand, well-established projects (e.g. GNU
Binutils, PHP, Python) typically fall into the middle
categories with 1,000–1,000,000 lines of code. These
projects have a reasonably high reproduction rate (0.6–
0.7) because their vulnerability reports are usually com-
prehensive. Furthermore, their respective communities
have established good bug reporting guidelines for these
projects [10, 13, 22]. Finally, large projects (with more
than 1,000,000 lines of code) are facing difficulties to re-

produce the reported vulnerabilities. We speculate that
frequent memory de/allocation could introduce more se-
vere bugs and reduce the reproducibility.

Time Factor. The time factor may also play a role
in the quality of vulnerability reports. Throughout the
years, new tools have been introduced to help with infor-
mation collection for vulnerability reporting [19, 17, 4].
As shown in Figure 7, the reproduction success rate
shows a general upward trend (except for 2013–2015),
which confirms our intuition. The extreme case is 2001–
2003 where none of the vulnerabilities were reproduced
successfully. During 2013–2015, we have a dip in the
reproduction rate due to a number of stack-overflow vul-
nerabilities that are hard to reproduce.

In fact, the success rate is also correlated with the av-
erage number of references per CVE-ID (i.e., the num-
ber of vulnerability reports from different sources). The
corresponding numbers for the different time periods are
14.5, 17.4, 29.4, 20.1, 28.1, and 8.7. Intuitively, with
more external references, it is easier to reproduce a vul-
nerability. The exception is the period of 2016–2017,
which has the highest success rate but the lowest num-
ber of references per CVE ID (only 8.7). Based on our
analysis, the vulnerabilities reported in the recent two
years have not yet accumulated enough information on-
line. However, there are some high-quality reports that
helped to boost the success rate of reproduction.
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6 Bridging the Gap

So far, our results suggest that it is extremely common
for vulnerability reports to miss vital information for the
reproduction. By applying our intuitive default settings
(i.e., common sense knowledge), we were able to repro-
duce 54.9% of the vulnerabilities. However, there are
still a staggering 45.1% of failed cases where the missing
information cannot be resolved by common sense knowl-
edge. In this section, we revisit the failed cases and at-
tempt to reproduce them through extensive manual trou-
bleshooting. We use specific examples to discuss useful
techniques when recovering missing information.

6.1 Method and Result Overview

For a given “failed” case, our goal is to understand the
exact underlying causes for the reproduction failure. We
employ a variety of ad-hoc techniques as demanded by
each case, including debugging the software and PoC
files, inspecting and modifying the source code, testing
the cases in multiple operating systems and versions, and
searching related hints on the web. The failed cases take
substantially longer to troubleshoot. Through intensive
manual efforts (i.e., another 2,000 man-hours), we suc-
cessfully reproduced another 94 CVE vulnerabilities and
57 non-CVE vulnerabilities, increasing the overall suc-
cess rate from 54.9% to 95.9%. Combined with the pre-
vious experiments, the total time spent are 3,600 man-
hours for the 5 analysts (more than 3 months). Many of
the reported vulnerabilities are inherently fragile. Their
successful reproduction relies on the correct deduction of
non-trivial pieces of missing information. Unfortunately,
there are still 15 vulnerabilities which remain unsuccess-
ful after attempted by all 5 analysts.

6.2 Case Studies

In the following, we present detailed case studies to il-
lustrate techniques that are shown to be useful to recover
different types of missing information.

A: Missing Software Version. As shown in
Table 4, the software version information is missing
in many reports, especially, on individual source web-
sites. For most of the cases (e.g., CVE-2015-7547 and
CVE-2012-4412), the missed version information can be
recovered by reading other external references. There
is only 1 case (CVE-2017-12858), for which we can-
not find the software version information in any of the
cited references. Eventually, we recover the version in-
formation from an independent tech-blog after extensive
searching through search engines and forum posts.

B: Missing OS & Environment Information. If the
reproduction failure is caused by the choice of OS, it is
very time-consuming to troubleshoot. For instance, for
the coreutils CVE-2013-0221/0222/0223, we found
that the vulnerabilities only existed in a specific patch by
SUSE: coreutils-i18n.patch. If the patch was not
applied to the OS distribution (e.g., Ubuntu), then the
vulnerability would not be triggered, despite the report
claiming coreutils 8.6 is vulnerable. Another example
is CVE-2011-1938 where the choice of OS has an influ-
ence on PHP’s dependencies. The operating systems we
chose shipped an updated libxml which did not permit
the vulnerable software to be installed. This is because
the updated APIs caused PHP to fail during installation.
Without relevant information, an analyst needs to test a
number of OS and/or library versions.

C: Missing Installation/Configuration Information
While default settings have helped recover information
for many reports, they cannot handle special cases. We
identified cases where the success of the reproduction di-
rectly depends on how the software was compiled. For
example, the vulnerability CVE-2013-7226 is related to
the use of the gd.so external library. The vulnerability
would not be triggered if PHP is not compiled with the “-
-with-gd” option before compilation. Instead, we would
get an error from a function call without definition. Sim-
ilarly, CVE-2007-1001 and CVE-2006-6563 are vulner-
abilities that can only be triggered if ProFTPD is config-
ured with “--enable-ctrls” before compilation. Without
this information, the security analysts (reproducers) may
be misled to spend a long time debugging the PoC files
and trigger methods before trying the special software
configuration options.

D: Missing or Erroneous Proof-of-Concept. The
PoC is arguably one of the most important pieces of in-
formation in a report. While many source websites did
not directly include a PoC, we can often find the PoC
files through other references. If the PoC is still missing,
an analyst would have no other choices but to attempt
to re-create the PoC, which requires time and in-depth
knowledge of the vulnerable software.

In addition, we observe that many PoC files are erro-
neous. In total, we identified and fixed the errors in 33
PoC files. These errors can be something small such as
a syntax error (e.g., CVE-2004-2167) or a character en-
coding problem that affects the integrity of the PoC (e.g.,
CVE-2004-1293). For cases such as CVE-2004-0597

and CVE-2014-1912, the provided PoCs are incomplete,
missing certain files that are necessary to the reproduc-
tion. We had to find them in other un-referenced websites
or re-create the missing pieces from scratch, which took
days and even weeks to succeed.

E: Missing Trigger Method. Deducing the trigger
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Trigger Software PoC Software OS Software Verify.
Method Install. File Config. Info. Version Method

74 43 38 6 4 1 0

Table 6: The number of successfully reproduced vulner-
abilities where the default setting does not work.

method, similar to PoC, requires domain knowledge. For
instance, for the GAS CVE-2005-4807, simply running
the given PoC will not trigger any vulnerability. In-
stead, by knowing how GAS works, we infer that after
generating the C file, it needs to be compiled with the
“-S” option to generate the malicious assembly file. This
assembly file should then be passed to the GAS binary.
In the same way, we observe from CVE-2006-5295,
CVE-2006-4182, CVE-2010-4259, and several others,
that the PoC is used to generate a payload. The pay-
load should be fed into a correct binary to trigger the ex-
pected crash. Inferring the trigger method may be com-
plemented with hints found in other “similar” vulnerabil-
ity reports.

6.3 Observations and Lessons

Reproducing a vulnerability based on the reported infor-
mation is analogous to doing a puzzle — the more pieces
are missing, the more challenging the puzzle is. The re-
producer’s experience plays an important role in making
the first educated guess (e.g., our default settings). How-
ever, common sense knowledge often fails on the “frag-
ile” cases that require very specific conditions to be trig-
gered successfully. When the key information is omitted,
it forces the analyst to spend time doing in-depth trou-
bleshooting. Even then, the troubleshooting techniques
are limited if there are no ground-truth reference points
or the software doesn’t provide enough error informa-
tion. In a few cases, the error logs hint to problems in a
given library or a function. More often, there is no good
way of knowing whether there are errors in the choice
of the operating system, the trigger method, or even the
PoC files. The analyst will need to exhaustively test pos-
sible combinations manually in a huge searching space.
This level of uncertainty significantly increases the time
needed to reproduce a vulnerability. As we progressed
through different cases, we identified a number of useful
heuristics to increase the efficiency.

Priority of Information. Given a failed case, the key
question is which piece of information is problematic.
Instead of picking a random information category for
in-depth troubleshooting, it is helpful to prioritize cer-
tain information categories. Based on our analysis, we
recommend the following order: trigger method, soft-
ware installation options, PoC, software configuration,
and the operating system. In this list, we prioritize the
information filed for which the default setting is more

likely to fail. More specifically, now that we have suc-
cessfully reproduced 95.9% of vulnerabilities (ground-
truth), we can retrospectively examine what information
field is still missing/wrong after the default setting is ap-
plied. As shown in Table 6, there are 74 cases where
the default trigger method does not work. There are
43 cases where the default software installation options
were wrong. These information fields should have been
resolved first before troubleshooting other fields.

Location of Vulnerability. While the reporters may
not always know (and include) the information about the
vulnerable modules, files, or functions, we find such in-
formation to be extremely helpful in the reproduction
process. If such information were included, we would
be able to directly avoid troubleshooting the compilation
options and the environment setting. In addition, if the
vulnerability has been patched, we find it helpful to in-
spect the commits for the affected files and compare the
code change before and after the patch. This helps to
verify the integrity of the PoC and the correctness of the
trigger method.

Correlation of Different Vulnerabilities. It is sur-
prisingly helpful to recover missing information by read-
ing reports of other similar vulnerabilities. These include
both reports of different vulnerabilities on the same soft-
ware and reports of similar vulnerability types on dif-
ferent software. It is particularly helpful to deduce the
trigger method and spot errors in PoC files. More specifi-
cally, out of the 74 cases that failed on the trigger method
(Table 6), we recovered 68 cases by reading other simi-
lar vulnerability reports (16 for the same software, 52
for similar vulnerability types). In addition, out of the
38 cases that failed on the PoC files, we recovered/fixed
the PoCs for 31 cases by reading the example code from
other vulnerability reports. This method is less success-
ful on other information fields such as “software installa-
tion options” and “OS environment”, which are primarily
recovered through manual debugging.

7 User Survey

To validate our measurement results, we conduct a sur-
vey to examine people’s perceptions towards the vulner-
ability reports and their usability. Our survey covers a
broad range of security professionals from both industry
and academia, which helps calibrate the potential biases
from our own analyst team.

7.1 Setups

Survey Questions. We have 3 primary questions. Q1
if you were to reproduce a vulnerability based on a re-
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Figure 9: Familiar types of
vulnerabilities.

port, what information do you think should be included
in the report? Q2, based on your own experience, what
information is often missing in existing vulnerability re-
ports? Q3 what techniques do you usually use to repro-
duce the vulnerability if certain information is missing?
Q1 and Q2 are open questions; their purpose is to under-
stand whether missing information is a common issue.
Q3 has a different purpose, which is to examine the va-
lidity of the “techniques” we used to recover the miss-
ing information (Section 6) and collect additional sug-
gestions. To this end, Q3 first provides a randomized list
of “techniques” that we have used and an open text box
for the participants to add other techniques.

We ask another 4 questions to assess the participants’
background and qualification. The questions cover (Q4)
the profession of the participant, (Q5) years of experi-
ence in software security, (Q6) first-hand experience us-
ing vulnerability reports to reproduce a vulnerability, and
(Q7) their familiarity with different types of vulnerabili-
ties.

Recruiting. We recruit participants that are experi-
enced in software security. This narrows down the pool
of potential candidates to a very small population of se-
curity professionals, which makes it challenging to do
a large-scale survey. For example, it is impossible to
recruit people from Amazon Mechanical Turk or even
general computer science students to provide meaningful
answers. Therefore, we send our survey request to secu-
rity teams that are specialized on security vulnerability
analysis. To reduce bias, we reached out to a number of
independent teams from both academia and industry.

In total, we received responses from 48 security pro-
fessionals at 10 different institutions, including 6 aca-
demic research groups, 2 CTF teams, 2 industry research
labs. None of these respondents are from the authors’
own institutions. Our study has received permission
from the corresponding security teams and our local IRB
(#STUDY00008566). To ensure the answer quality, we
filter out participants who have never reproduced a vul-
nerability before (based on Q6), leaving us N = 43 re-
sponses for further analysis.

7.2 Analysis and Key Findings

As shown in Figure 8, about half of our respondents have
been working in the field for more than 5 years. The
participants include 11 research scientists, 6 professors,
5 white-hat hackers, and 1 software engineer. In addi-
tion, there are 17 graduate students and 3 undergradu-
ate students from two university CTF teams. Figure 9
shows that most respondents (39 out of 43) are famil-
iar with memory error vulnerabilities. In this multiple-
choice question, many respondents also stated that they
were familiar with other types of vulnerabilities (e.g.,
Denial of service, SQL injection). Their answers can be
interpreted as a general reflection on the usability prob-
lem of vulnerability reports.

Vulnerability Reproduction. Table 7 shows the
results from Q1 and Q2 (open questions). We manually
extract the key points from the respondents’ answers, and
classify them based on the information categories. If the
respondent’s comments do not fit in any existing cate-
gories, we list the comment at the bottom of the table.

The respondents stated that the PoC files and the Trig-
ger Method are the most necessary information, and yet
those are also more likely to be missing in the original
report. In addition, the vulnerable software version is
considered necessary for reproduction, which is not often
missing. Other information categories such as software
configuration and installation are considered less impor-
tant. The survey results are relatively consistent with our
empirical measurement result.

The respondents also mentioned other information cat-
egories. For example, 18 respondents believed that infor-
mation about “the exact location of the vulnerable code”
was necessary for a report to be complete. Indeed, know-
ing the exact location of the vulnerable code is help-
ful, especially for developing a quick patch. However,
pinpointing the root causes and locating the vulnerable
code is already beyond the capacity (and duty) of the re-
porters. In addition, one respondent mentioned that it
would helpful to include the “stack crash dump” in the
report. Stack traces are usually helpful to verify the vul-
nerability. Sometimes stack traces are included in the
comments of the PoC files, and thus it is difficult to clas-
sify this information.

Recovering the Missing Information. Table 8 shows
that results for Q3, where respondents check (multi-
ple) methods they use to recover the missing informa-
tion. Most respondents (35 out of 43) stated that they
would manually read the PoC files and modify the PoC
if necessary. In addition, respondents opt to search the
CVE ID online to obtain additional information beyond
the indexed references. Interestingly, respondents were
less likely to ask questions online (e.g., Twitter or on-
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Information Necessary Missing
PoC files 17 15
Trigger method 17 13
Vulnerable software version 17 1
OS information 13 6
Source code of vulnerable software 4 2
Software configuration 2 3
Vulnerability verification 1 2
Software installation 1 1
The exact location of the vulnerable code 18 9
Stack crash dump 1 0

Table 7: User responses to what information is neces-
sary to the reproduction, and what information is often
missing in existing reports.

Method #
Read, test, and modify the PoC file 35
Searching the CVE ID via search engines 32
Read code change before and after the vulnerability patch 31
Guessing the information based on experience 30
Search on popular forums discussing bugs (e.g., bugzilla) 30
Searching in other similar vuln. reports (e.g., same software) 21
Asking friends and/or colleagues 18
Asking questions online (e.g., online forums, Twitter) 11
Bin diff, wait for PoC/exploit 1
Run the PoC and debug it in QEMU 1

Table 8: User responses to the possible methods to re-
cover the missing information in vulnerability reports.
The first 8 methods are listed options in Q3, and the last
two are added by the respondents.

line forums) or ask colleagues. One possible explanation
(based on our own experience) is that questions related
to vulnerability reproduction rarely get useful answers
when posted online.

Respondents also left comments in Q3’s text box.
These comments, however, are already covered by the
listed options. For example, one respondent suggested
“Bin diff”, which is similar to the listed option: “Read
code change before and after the vulnerability patch”.
Another respondent suggested“Run the PoC and debug
it in QEMU”, which belong to the category of “Read,
test and modify the PoC file”. We have compared the an-
swers from more experienced respondents (working ex-
perience > 5 years) and those from less experienced re-
spondents. We did not find major differences (the rank-
ing orders are the same) and thus omit the result for
brevity. Overall, the survey results provide external val-
idations to our empirical measurement results, and con-
firm the validity of our information recovery methods.

8 Discussion

Through both quantitative and qualitative analyses, we
have demonstrated the poor-reproducibility of crowd-
reported vulnerabilities. In the following, we first sum-

marize the key insights from our results, and offer sug-
gestions on improving the reproducibility of crowd-
sourced reports. Following, we use this opportunity to
discuss implications on other types of vulnerabilities and
future research directions. Finally, we would like to
share the full “reproducible” vulnerability dataset with
the community to facilitate future research.

8.1 Our Suggestions
To improve the reproducibility of the reported vulnera-
bilities, it is likely that a joint effort is needed from differ-
ent players in the ecosystem. Here, we discuss the pos-
sible approaches from the perspectives of vulnerability-
reporting websites, vulnerability reporters, and repro-
ducers.

Standardizing Vulnerability Reports. Vulnerability-
reporting websites can enforce a more strict submis-
sion policy by asking the reporters to include a mini-
mal set of required information fields. For example, if
the reporter has crafted the PoC, the website may re-
quire the reporter to fill in trigger method and the com-
pilation options in the report. At the same time, web-
sites could also provide incentives for high-quality sub-
missions. Currently, program managers in bug bounty
programs can enforce more rigorous submission policies
through cash incentives. For public disclosure websites,
other incentives might be more feasible such as commu-
nity recognition [58, 53]. For example, a leaderboard
(e.g., HackerOne) or an achievement system (e.g., Stack-
Exchange) can help promote high-quality reports.

Automated Tools to Assist Vulnerability Reporters.
From the reporter’s perspective, manually collecting all
the information can be tedious and challenging. The high
overhead could easily discourage the crowdsourced re-
porting efforts, particularly if the reporting website has
stricter submission guidelines. Instead of relying on pure
manual efforts, a more promising approach is to develop
automated tools which can help collecting information
and generating standardized reports. Currently, there are
tools available in specific systems which can aid in this
task. For example, reportbug in Debian can automat-
ically retrieve information from the vulnerable software
and system. However, more research is needed to de-
velop generally applicable tools to assist vulnerability re-
porters.

Vulnerability Reproduction Automation. Given the
heterogeneous nature of vulnerabilities, the reproduction
process is unlikely to be fully automated. Based on Fig-
ure 3, we discuss the parts that can be potentially auto-
mated to improve the efficiency of the reproducers.

First, for the report gathering step, we can potentially
build automated tools to search, collect, and fuse all the
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available information online to generate a “reproducible”
report. Our results have confirmed the benefits of merg-
ing all available information to reproduce a given vul-
nerability. There are many open challenges to achieving
this goal, such as verifying the validity of the informa-
tion and reconciling conflicting information. Second, the
environment setup step is difficult to automate due to the
high-level of variability across reports. A potential way
to improve the efficiency is to let the reproducer prepare
a configuration file to specify the environment require-
ments. Then automated tools can be used to generate
a Dockerfile and a container for the reproducer to di-
rectly verify the vulnerability. Third, the software prepa-
ration part can also be automated if the software name
and vulnerable versions are well-defined. The exceptions
are those that rely on special configuration or installation
flags. Finally, the reproduction would involve primarily
manual operations. However, if the PoC, trigger method,
and verification method are all well-defined, it is possible
for the reproducer to automate the verification process.

8.2 Limitations

Other Vulnerability Types. While this study primar-
ily focuses on memory error vulnerabilities, anecdotal
evidence show that the reproducibility problem applies
to other vulnerability types. For example, a number of
online forums are specially formed for software devel-
opers and users to report and discuss various types of
bugs and vulnerabilities [3, 11, 12]. It is not uncommon
for a discussion thread to last for weeks or even years
before eventually reproducing a reported vulnerability.
For example, an Apache design error required back and
forth discussion over 9 days to reproduce the bug [1].
In another example, a compilation error in GNU Binu-
tils led several developers to complain about their failed
attempts when reproducing the issue. The problem has
been left unresolved for nearly a year [2]. Nonetheless,
further research is still needed to examine how our statis-
tical results can generalize to other vulnerability types.

Public vs. Private Vulnerability Reports. This
paper is focused on open-source software and public
vulnerability reports. Most of the software we stud-
ied employ public discussion forums and mailing lists
(e.g., Bugzilla) where there are back-and-forth commu-
nications between the reporters and software developers
throughout the vulnerability reproduction and patching
process. The communications are public and thus can
help the vulnerability reproduction of other parties (e.g.,
independent research teams). Although our results may
not directly reflect the vulnerability reproduction in pri-
vate bug bounty programs, there are some connections.
For example, many vulnerabilities reported to private

programs would go public after a certain period of time
(e.g., after the vulnerabilities are fixed). To publish the
CVE entry, the original vulnerability reports must be dis-
closed in the references [6]. A recent paper shows that
vulnerability reports in private bug bounty programs also
face key challenges in reproduction [53], which is com-
plementary to our results.

8.3 Future Work

Our future work primarily focuses on automating parts of
the vulnerability reproduction process. For example, our
findings suggest that aggregating the information across
different source websites is extremely helpful when re-
covering missing information in individual reports. The
CVE IDs can help link different reports scattered across
websites. However, the open question is how to automat-
ically and accurately extract and fuse the unstructured in-
formation into a single report. This is a future direction
for our work. In addition, during our experiments, we
noticed that certain reports had made vague and seem-
ingly unverified claims, some of which were even mis-
leading and caused significant delays to the reproduc-
tion progress. In this analysis, we did not specifically
assess the impact of erroneous information, which will
need certain forms of automated validation technique.

8.4 Dataset Sharing

To facilitate future research, we will share our full dataset
with the research community. Reproducible vulnerabil-
ity reports can benefit the community in various ways. In
addition to helping the software developers and vendors
to patch the vulnerabilities, the reports can also help re-
searchers to develop and evaluate new techniques for vul-
nerability detection and patching. In addition, the repro-
ducible vulnerability reports can serve as educational and
training materials for students and junior analysts [53].

We have published the full dataset of 291 vulnerabili-
ties with CVE-IDs and 77 vulnerabilities without CVE-
IDs. The dataset is available at https://github.com/

VulnReproduction/LinuxFlaw. For each vulnerability,
we have filled in the missing pieces of information, an-
notated the issues we encountered during the reproduc-
tion, and created the appropriate Dockerfiles for each
case. Each vulnerability report contains structured infor-
mation fields (in HTML and JSON), detailed instructions
on how to reproduce the vulnerability, and fully-tested
PoC exploits. In the repository, we have also included
the pre-configured virtual machines with the appropriate
environments. To the best of our knowledge, this is the
largest public ground-truth dataset of real-world vulner-
abilities which were manually reproduced and verified.
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9 Related Work

There is a body of work investigating vulnerabilities and
bug reports in both security and software engineering
communities. In the following, we summarize the key
existing works and highlight the uniqueness of our work.

In the field of software engineering, past research ex-
plored bug fixes in general (beyond just security-related
bugs). Bettenburg et al. revealed some critical infor-
mation needed for software bug fixes [28]. They found
that reporters typically do not include these informa-
tion in bug reports simply due to the lack of automated
tools. Aranda et al. investigated coordination activities
in bug fixing [26], demonstrating that bug elimination is
strongly dependent on social, organizational, and tech-
nical knowledge that cannot be solely extracted through
automation of electronic repositories. Ma et al. stud-
ied bug fixing practices in a context where software bugs
are casually related across projects [45]. They found that
downstream developers usually apply temporary patches
while waiting for an upstream bug fix.

Similar to [26], Guo et al. also investigated how soft-
ware developers communicate and coordinate in the pro-
cess of bug fixing [36, 37]. They observed that bugs
handled by people on the same team or working in geo-
graphical proximity were more likely to get fixed. Zhong
and Su framed their investigation around automated bug
fixes and found that the majority of bugs are too compli-
cated to be automatically repaired [59]. Park et al. con-
ducted an analysis on the additional efforts needed after
initial bug fixes, finding that over a quarter of remedies
are problematic and require additional repair [50]. Soto
et al. conducted a large-scale study of bug-fixing com-
mits in Java projects, observing that less than 15% of
common bug fix patterns can be matched [51]. Similar
to our research, Chaparro et al. explored missing infor-
mation from bug reports, but focusing on automatically
detecting their absence/presence [31]. Instead, our work
focuses on understanding the impact of these missing in-
formation on the reproducibility.

In the security field, research on vulnerability reports
mainly focuses on studying and understanding the vul-
nerability life cycle. In a recent work, Li and Paxson con-
ducted a large scale empirical study of security patches,
finding that security patches have a lower footprint in
code bases than non-security bug fixes [43]. Frei et al.
compared the patching life cycle of newly disclosed vul-
nerabilities, quantifying the gap between the availability
of a patch after an exploit was released [35].

Similarly, Nappa et al. analyzed the patch deployment
process of more than one thousand vulnerabilities, find-
ing that only a small fraction of vulnerable hosts apply
security patches right after an exploit release [47]. Oz-
ment and Schechter measured the rate at which vulner-

abilities have been reported, finding foundational vul-
nerabilities to have a median lifetime of at least 2.6
years [49]. In addition to the study of vulnerability life
cycles, a recent work [53] reveals differing results be-
tween hackers and testers when identifying new vulner-
abilities, highlighting the importance of experience and
security knowledge. In this work, we focus on under-
standing vulnerability reproduction, which is subsequent
to software vulnerability identification.

Unlike previous works that mainly focus on security
patches or bug fixes, our work seeks to tease apart vul-
nerability reports from the perspective of vulnerability
reproduction. To the best of our knowledge, this is the
first study to provide an in-depth analysis of the practical
issues in vulnerability reproduction. Additionally, this is
the first work to study a large amount of real-world vul-
nerabilities through extensive manual efforts.

10 Conclusion

In this paper, we conduct an in-depth empirical analy-
sis on real-world security vulnerabilities, with the goal
of quantifying their reproducibility. We show that it
is generally difficult for a security analyst to reproduce
a failure pertaining to a vulnerability with just a sin-
gle report obtained from a popular security forum. By
leveraging a crowdsourcing approach, the reproducibil-
ity can be increased but troubleshooting the failed vul-
nerabilities still remains challenging. We find that, apart
from Internet-scale crowdsourcing and some interesting
heuristics, manual efforts (e.g. debugging) based on ex-
perience are the sole way to retrieve missing information
from reports. Our findings align with the responses given
by the hackers, researchers, and engineers we surveyed.
With these observations, we believe there is a need to:
introduce more effective and automated ways to collect
commonly missing information from reports and to over-
haul current vulnerability reporting systems by enforcing
and incentivizing higher-quality reports.
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WEISS, C., PREMRAJ, R., AND ZIMMERMANN,
T. What makes a good bug report? In Pro-
ceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineer-
ing (2008), SIGSOFT ’08/FSE-16.

[29] CARLINI, N., BARRESI, A., PAYER, M., WAG-
NER, D., AND GROSS, T. R. Control-flow bend-
ing: On the effectiveness of control-flow integrity.
In Proceedings of the 24th USENIX Conference on
Security Symposium (2015), Usenix Security’15.

[30] CASTRO, M., COSTA, M., AND HARRIS, T. Se-
curing software by enforcing data-flow integrity.
In Proceedings of the 7th Symposium on Oper-
ating Systems Design and Implementation (2006),
OSDI’06.

[31] CHAPARRO, O., LU, J., ZAMPETTI, F.,
MORENO, L., DI PENTA, M., MARCUS, A.,
BAVOTA, G., AND NG, V. Detecting missing
information in bug descriptions. In Proceedings
of the 2017 11th Joint Meeting on Foundations of
Software Engineering (2017), ESEC/FSE’2017.

934    27th USENIX Security Symposium USENIX Association

https://bz.apache.org/bugzilla/show_bug.cgi?id=41867
https://bz.apache.org/bugzilla/show_bug.cgi?id=41867
https://hackerone.com/reports/273946
https://hackerone.com/reports/273946
https://bz.apache.org/bugzilla/
https://bz.apache.org/bugzilla/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/migration_planning_guide/sect-kernel-abrt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/migration_planning_guide/sect-kernel-abrt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/migration_planning_guide/sect-kernel-abrt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/migration_planning_guide/sect-kernel-abrt
https://cve.mitre.org/
https://vuls.cert.org/confluence/display/Wiki/CVE+IDs+and+How+to+Obtain+Them
https://vuls.cert.org/confluence/display/Wiki/CVE+IDs+and+How+to+Obtain+Them
https://vuls.cert.org/confluence/display/Wiki/CVE+IDs+and+How+to+Obtain+Them
http://www.sans.org/top25-software-errors/
http://www.sans.org/top25-software-errors/
https://www.top500.org/statistics/details/osfam/1
https://www.top500.org/statistics/details/osfam/1
https://www.exploit-db.com/
https://gcc.gnu.org/bugs/#need
https://bugs.gentoo.org/
https://hackerone.com
https://bugs.php.net/how-to-report.php
https://bugs.php.net/how-to-report.php
https://nvd.nist.gov/
https://nvd.nist.gov/
http://www.openwall.com/
https://bugzilla.redhat.com/
https://bugzilla.redhat.com/
https://wiki.debian.org/reportbug
https://wiki.debian.org/reportbug
https://www.cnet.com/news/researcher-posts-facebook-bug-report-to-mark-zuckerbergs-wall/
https://www.cnet.com/news/researcher-posts-facebook-bug-report-to-mark-zuckerbergs-wall/
https://www.cnet.com/news/researcher-posts-facebook-bug-report-to-mark-zuckerbergs-wall/
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://securitytracker.com/
https://securitytracker.com/
https://www.securityfocus.com/
https://www.securityfocus.com/
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack


[32] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P.,
AND IYER, R. K. Non-control-data attacks are
realistic threats. In Proceedings of the 14th Con-
ference on USENIX Security Symposium (2005),
Usenix Security’05.

[33] COWAN, C., BEATTIE, S., JOHANSEN, J., AND
WAGLE, P. Pointguardtm: Protecting pointers from
buffer overflow vulnerabilities. In Proceedings of
the 12th Conference on USENIX Security Sympo-
sium (2003), Usenix Security’03.

[34] COWAN, C., PU, C., MAIER, D., HINTONY, H.,
WALPOLE, J., BAKKE, P., BEATTIE, S., GRIER,
A., WAGLE, P., AND ZHANG, Q. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-
overflow attacks. In Proceedings of the 7th Con-
ference on USENIX Security Symposium (1998),
Usenix Security’98.

[35] FREI, S., MAY, M., FIEDLER, U., AND PLAT-
TNER, B. Large-scale vulnerability analysis. In
Proceedings of the 2006 SIGCOMM Workshop on
Large-scale Attack Defense (2006), LSAD’06.

[36] GUO, P. J., ZIMMERMANN, T., NAGAPPAN, N.,
AND MURPHY, B. Characterizing and predict-
ing which bugs get fixed: An empirical study of
microsoft windows. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software
Engineering (2010), ICSE’10.

[37] GUO, P. J., ZIMMERMANN, T., NAGAPPAN, N.,
AND MURPHY, B. ”not my bug!” and other reasons
for software bug report reassignments. In Proceed-
ings of the ACM 2011 Conference on Computer
Supported Cooperative Work (2011), CSCW’11.

[38] HATMAKER, T. Google’s bug bounty program
pays out $3 million, mostly for android and
chrome exploits. TechCrunch, 2017. https://

techcrunch.com/2017/01/31/googles-bug-

bounty-2016/.

[39] HU, H., SHINDE, S., ADRIAN, S., CHUA, Z. L.,
SAXENA, P., AND LIANG, Z. Data-oriented pro-
gramming: On the expressiveness of non-control
data attacks. In Proceedings of the 2016 IEEE Sym-
posium on Security and Privacy (2016), SP’16.

[40] JIA, X., ZHANG, C., SU, P., YANG, Y.,
HUANG, H., AND FENG, D. Towards efficient
heap overflow discovery. In Proceedings of the
26th USENIX Conference on Security Symposium
(2017), USENIX Security’17.

[41] KHANDELWAL, S. Samsung launches bug
bounty program — offering up to $200,000

in rewards. TheHackerNews, 2017. https:

//thehackernews.com/2017/09/samsung-

bug-bounty-program.html.

[42] KWON, Y., SALTAFORMAGGIO, B., KIM, I. L.,
LEE, K. H., ZHANG, X., AND XU, D. A2c:
Self destructing exploit executions via input per-
turbation. In Proceedings of The Network and
Distributed System Security Symposium (2017),
NDSS’17.

[43] LI, F., AND PAXSON, V. A large-scale empirical
study of security patches. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and
Communications Security (2017), CCS’17.

[44] LIAO, X., YUAN, K., WANG, X., LI, Z., XING,
L., AND BEYAH, R. Acing the ioc game: Toward
automatic discovery and analysis of open-source
cyber threat intelligence. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and
Communications Security (2016), CCS’16.

[45] MA, W., CHEN, L., ZHANG, X., ZHOU, Y., AND
XU, B. How do developers fix cross-project cor-
related bugs?: A case study on the github scien-
tific python ecosystem. In Proceedings of the 39th
International Conference on Software Engineering
(2017), ICSE’17.

[46] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M.,
AND ZDANCEWIC, S. Softbound: Highly com-
patible and complete spatial memory safety for c.
In Proceedings of the 30th ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation (2009), PLDI’09.

[47] NAPPA, A., JOHNSON, R., BILGE, L., CA-
BALLERO, J., AND DUMITRAS, T. The attack of
the clones: A study of the impact of shared code on
vulnerability patching. In Proceedings of the 2015
IEEE Symposium on Security and Privacy (2015),
SP’15.

[48] NEWMAN, L. H. Equifax officially has no excuse.
Wired, 2017. https://www.wired.com/story/
equifax-breach-no-excuse/.

[49] OZMENT, A., AND SCHECHTER, S. E. Milk or
wine: Does software security improve with age? In
Proceedings of the 15th Conference on USENIX Se-
curity Symposium (2006), USENIX Security’06.

[50] PARK, J., KIM, M., RAY, B., AND BAE, D.-H.
An empirical study of supplementary bug fixes. In
Proceedings of the 9th IEEE Working Conference
on Mining Software Repositories (2012), MSR’12.

USENIX Association 27th USENIX Security Symposium    935

https://techcrunch.com/2017/01/31/googles-bug-
https://techcrunch.com/2017/01/31/googles-bug-
bounty-2016/
https://thehackernews.com/2017/09/samsung-bug-bounty-program.html
https://thehackernews.com/2017/09/samsung-bug-bounty-program.html
https://thehackernews.com/2017/09/samsung-bug-bounty-program.html
https://www.wired.com/story/equifax-breach-no-excuse/
https://www.wired.com/story/equifax-breach-no-excuse/


[51] SOTO, M., THUNG, F., WONG, C.-P., LE GOUES,
C., AND LO, D. A deeper look into bug fixes: Pat-
terns, replacements, deletions, and additions. In
Proceedings of the 13th International Conference
on Mining Software Repositories (2016), MSR’16.

[52] TAN, L., ZHOU, Y., AND PADIOLEAU, Y. acom-
ment: Mining annotations from comments and
code to detect interrupt related concurrency bugs.
In Proceedings of the 33rd International Confer-
ence on Software Engineering (2011), ICSE’11.

[53] VOTIPKA, D., STEVENS, R., REDMILES, E., HU,
J., AND MAZUREK, M. Hackers vs. testers:
A comparison of software vulnerability discovery
processes. In Proceedings of the 2018 IEEE Sym-
posium on Security and Privacy (2018), SP’18.

[54] WARREN, T. Microsoft will now pay up to
$250,000 for windows 10 security bugs. The Verge,
2017. https://www.theverge.com/2017/7/

26/16044842/microsoft-windows-

bug-bounty-security-flaws-bugs-250k.

[55] XU, J., MU, D., CHEN, P., XING, X., WANG,
P., AND LIU, P. Credal: Towards locating a mem-
ory corruption vulnerability with your core dump.
In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security
(2016), CCS’16.

[56] XU, J., MU, D., XING, X., LIU, P., CHEN, P.,
AND MAO, B. Postmortem program analysis with
hardware-enhanced post-crash artifacts. In Pro-
ceedings of the 26th USENIX Conference on Secu-
rity Symposium (2017), USENIX Security’17.

[57] XU, W., AND FU, Y. Own your android! yet
another universal root. In Proceedings of the
9th USENIX Conference on Offensive Technologies
(2015), WOOT’15.

[58] ZHAO, M., GROSSKLAGS, J., AND LIU, P. An
empirical study of web vulnerability discovery
ecosystems. In Proceedings of the 2015 ACM
SIGSAC Conference on Computer and Communi-
cations Security (2015), CCS’15.

[59] ZHONG, H., AND SU, Z. An empirical study on
real bug fixes. In Proceedings of the 37th Interna-
tional Conference on Software Engineering (2015),
ICSE’15.

[60] ZHU, Z., AND DUMITRAS, T. Featuresmith: Au-
tomatically engineering features for malware de-
tection by mining the security literature. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (2016),
CCS’16.

936    27th USENIX Security Symposium USENIX Association

https://www.theverge.com/2017/7/26/16044842/microsoft-windows-
https://www.theverge.com/2017/7/26/16044842/microsoft-windows-
bug-bounty-security-flaws-bugs-250k

	Introduction
	Background and Motivations
	Methodology and Dataset
	Methodology Overview
	Vulnerability Report Dataset

	Reproduction Experiment Design
	Reproduction Workflow
	The Analyst Team
	Default Settings
	Controlled Information Sources

	Measurement Results
	Time Spent
	Reproducibility
	Missing Information
	Additional Factors

	Bridging the Gap
	Method and Result Overview
	Case Studies
	Observations and Lessons

	User Survey
	Setups
	Analysis and Key Findings

	Discussion
	Our Suggestions 
	Limitations
	Future Work
	Dataset Sharing

	Related Work
	Conclusion

