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ABSTRACT
While deep learning has shown a great potential in various domains,
the lack of transparency has limited its application in security or
safety-critical areas. Existing research has attempted to develop
explanation techniques to provide interpretable explanations for
each classification decision. Unfortunately, current methods are
optimized for non-security tasks (e.g., image analysis). Their key
assumptions are often violated in security applications, leading to
a poor explanation fidelity.

In this paper, we propose LEMNA, a high-fidelity explanation
method dedicated for security applications. Given an input data
sample, LEMNA generates a small set of interpretable features to ex-
plain how the input sample is classified. The core idea is to approx-
imate a local area of the complex deep learning decision boundary
using a simple interpretable model. The local interpretable model
is specially designed to (1) handle feature dependency to better
work with security applications (e.g., binary code analysis); and
(2) handle nonlinear local boundaries to boost explanation fidelity.
We evaluate our system using two popular deep learning applica-
tions in security (a malware classifier, and a function start detector
for binary reverse-engineering). Extensive evaluations show that
LEMNA’s explanation has a much higher fidelity level compared to
existing methods. In addition, we demonstrate practical use cases
of LEMNA to help machine learning developers to validate model be-
havior, troubleshoot classification errors, and automatically patch
the errors of the target models.
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1 INTRODUCTION
In recent years, Deep Neural Networks have shown a great potential
to build security applications. So far, researchers have successfully
applied deep neural networks to train classifiers for malware classi-
fication [2, 16, 21, 48, 68], binary reverse-engineering [15, 52, 71]
and network intrusion detection [24, 62], which all achieved an
exceptionally high accuracy.

While intrigued by the high-accuracy, security practitioners are
concerned about the lack of transparency of the deep learning mod-
els and thus hesitated to widely adopt deep learning classifiers in
security and safety-critical areas. More specifically, deep neural net-
works could easily contain hundreds of thousands or even millions
of neurons. This network, once trained with massive datasets, can
provide a high classification accuracy. However, the high complex-
ity of the network also leads to a low “interpretability” of the model.
It is very difficult to understand how deep neural networks make
certain decisions. The lack of transparency creates key barriers
to establishing trusts to the model or effectively troubleshooting
classification errors.

To improve the transparency of deep neural networks, researchers
start to work on explanation methods to interpret the classification
results. Most existing works focus on non-security applications
such as image analysis or natural language processing (NLP). Fig-
ure 1a shows an example. Given an input image, the explanation
method explains the classification result by pinpointing the most
impactful features to the final decision. Common approaches in-
volve running forward propagation [17, 19, 32, 76] or backward
propagation [3, 50, 53] in the network to infer important features.
More advanced methods [34, 45] produce explanations under a
“blackbox” setting where no knowledge of classifier details is avail-
able. The basic idea is to approximate the local decision boundary
using a linear model to infer the important features.

Unfortunately, existing explanation methods are not directly
applicable to security applications. First, most existing methods are
designed for image analysis, which prefers using Convolutional
Neural Networks (CNN). However, CNN model is not very popular
in security domains. Security applications such as binary reverse-
engineering and malware analysis either have a high-level feature
dependency (e.g, binary code sequences), or require high scalability.
As a result, Recurrent Neural Networks (RNN) or Multilayer Percep-
tron Model (MLP) are more widely used [15, 21, 52, 68]. So far, there
is no explanation method working well on RNN. Second, existing
methods still suffer from a low explanation fidelity, as validated by
our experiments in §5. This might be acceptable for image analysis,
but can cause serious troubles in security applications. For exam-
ple, in Figure 1a, the highlighted pixels are not entirely accurate
(in particular at the edge areas) but are sufficient to provide an
intuitive understanding. However, for security applications such as
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binary analysis, incorrectly highlighting one byte of code may lead
to serious misunderstandings or interpretation errors.
OurDesigns. In this paper, we seek to develop a novel, high-fidelity
explanation method dedicated for security applications. Our method
works under a black-box setting and introduces specialized designs
to address the above challenges. Given an input data instance x
and a classifier such as an RNN, our method aims to identify a small
set of features that have key contributions to the classification of
x. This is done by generating a local approximation of the target
classifier’s decision boundary near x. To significantly improve the
fidelity of the approximation, our method no longer assumes the
local detection boundary is linear, nor does it assume the features
are independent. These are two key assumptions made by existing
models [34, 45] which are often violated in security applications,
causing a poor explanation fidelity. Instead, we introduce a new
approach to approximate the non-linear local boundaries based on
a mixture regression model [27] enhanced by fused lasso [64].

Our design is based on two key insights. First, a mixture regres-
sion model, in theory, can approximate both linear and non-linear
decision boundaries given enough data [35]. This gives us the flexi-
bility to optimize the local approximation for a non-linear boundary
and avoid big fitting errors. Second, “fused lasso” is a penalty term
commonly used for capturing feature dependency. By adding fused
lasso to the learning process, the mixture regression model can
take features as a group and thus capture the dependency between
adjacent features. In this way, our method produces high-fidelity
explanation results by simultaneously preserving the local non-
linearity and feature dependency of the deep learning model. For
convenience, we refer to our method as “Local Explanation Method
using Nonlinear Approximation” or LEMNA.
Evaluations. To demonstrate the effectiveness of our explanation
model, we apply LEMNA to two promising security applications:
classifying PDF malware [55], and detecting the function start to
reverse-engineer binary code [52]. The classifiers are trained on
10,000 PDF files and 2,200 binaries respectively, and both achieve an
accuracy of 98.6% or higher. We apply LEMNA to explain their classi-
fication results and develop a series of fidelity metrics to assess the
correctness of the explanations. The fidelity metrics are computed
either by directly comparing the approximated detection boundary
with the real one, or running end-to-end feature tests. The results
show that LEMNA significantly outperforms existing methods across
all different classifiers and application settings.

Going beyond the effectiveness assessment, we demonstrate how
security analysts and machine learning developers can benefit from
the explanation results. First, we show that LEMNA could help to
establish trusts by explaining how classifiers make the correct de-
cisions. In particular, for both binary and malware analyses, we
demonstrate the classifiers have successfully learned a number of
well-known heuristics and “golden rules” in the respective domain.
Second, we illustrate that LEMNA could extract “new knowledge”
from classifiers. These new heuristics are difficult to be manually
summarized in a direct way, but make intuitive sense to domain
experts once they are extracted by LEMNA. Finally, with LEMNA’s ca-
pability, an analyst could explain why the classifiers produce errors.
This allows the analyst to automatically generate targeted patches

(a) Image classification.
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... Not worth the price for the 

durability. Cool effects, ... 

to a vacuum that lasts

more than 60 days ...

(b) Sentiment analysis.

Figure 1: Examples of machine learning explanation: (a) the
image is classified as an “orange” due to the highlighted pix-
els; (b) The sentence is classified as “negative sentiment” due
to the highlighted keywords.

by augmenting training samples for each of the explainable errors,
and improve the classifier performance via targeted re-training.
Contributions. Our paper makes three key contributions.
• We design and develop LEMNA, a specialized explanation
method for deep learning based security applications. Using
a mixture regression model enhanced by fused lasso, LEMNA
generates high-fidelity explanation results for a range of
deep learning models including RNN.
• We evaluate LEMNA using two popular security applications,
including PDF malware classification and function start de-
tection in binary reverse-engineering. We propose a series
of “fidelity” metrics to quantify the accuracy of the explana-
tion results. Our experiments show that LEMNA outperforms
existing explanation methods by a significant margin.
• We demonstrate the practical applications of the explanation
method. For both binary analysis and malware detection,
LEMNA sheds lights on why the classifier makes correct and
incorrect decisions. We present a simple method to automat-
ically convert the insights into actionable steps to patch the
targeted errors of the classifiers.

To the best our knowledge, this is the first explanation system
specially customized for security applications and RNN. Our work
is only the initial step towards improving the model transparency
for more effective testing and debugging of deep learning models.
By making the decision-making process interpretable, our efforts
can make a positive contribution to building reliable deep learning
systems for critical applications.

2 EXPLAINABLE MACHINE LEARNING
In this section, we start with introducing the background of ex-
plainable machine learning, and then discuss existing explanation
techniques. Following that, in Section §3, we introduce key security
applications using deep learning models and discuss why existing
explanation techniques are not applicable to security applications.

2.1 Problem Definition
Explainable machine learning seeks to provide interpretable expla-
nations for the classification results. More specifically, given an
input instance x and a classifier C , the classifier will assign a label
y for x during the testing time. Explanation techniques then aim
to illustrate why instance x is classified as y. This often involves
identifying a set of important features that make key contributions
to the classification process (or result). If the selected features are



interpretable to human analysts, then these features can offer an
“explanation”. Figure 1 shows examples for image classification
and sentiment analysis. The classifier decision can be explained by
selected features (e.g., highlighted pixels and keywords).

In this paper, we focus on the deep neural networks to develop
explanation methods for security applications. Up to the present,
most existing explanation methods are designed for image anal-
ysis or NLP. We categorize them into “whitebox” and “blackbox”
methods and describe how they work.

2.2 Whitebox Explanation Methods
Most existing explanation techniques work under the whitebox
setting where the model architecture, parameters, and training
data are known. These techniques are also referred as Deep Expla-
nation Methods and mainly designed for CNN. They leverage two
major strategies to infer feature importance: (1) forward propa-
gation based input or structure occlusion; and (2) gradient-based
backpropagation. We discuss those techniques in the following.
Forward Propagation based Methods. Given an input sample,
the key idea is to perturb the input (or hidden network layers)
and observe the corresponding changes. The intuition behind is
that perturbing important features is more likely to cause major
changes to the network structure and the classification output.
Existing methods either nullify a subset of features or removing
intermediate parts of the network [17, 32, 74, 76]. A recent work [19]
extends this idea to detecting adversarial examples (i.e., malicious
inputs aiming to cause classification errors).
BackwardPropagation basedMethods.Back-propagation based
methods leverage the gradients of the deep neural network to infer
feature importance. The gradients can be the partial derivatives
of classifier output with respect to the input or hidden layers. By
propagating the output back to the input, these methods directly
calculate the weights of input features. For image classifiers, the
basic method is to compute a feature “saliency map” using the gra-
dients of output with respect to the input pixels in images [54, 57]
or video frames [18]. Later works improve this idea by applying
saliency map layer by layer [3] or mapping groups of pixels [50].

Backward propagation based methods face the challenge of “zero
gradient”. Inside a neural network, the activation functions of-
ten have saturated parts, and the corresponding gradients will
become zero. Zero gradients make it difficult (if not impossible) for
the “saliency map” to back-track the important features. Recent
works [53, 59] attempted to address this problem through approxi-
mation. However, this sacrifices the fidelity of the explanation [34].

2.3 Blackbox Explanation Methods
Blackbox explanation methods require no knowledge about the
classifier internals such as network architecture and parameters.
Instead, they treat the classifier as a “blackbox” and analyze it
by sending inputs and observing the outputs (i.e., Model Induction
Methods).

The most representative system in this category is LIME [45].
Given an input x (e.g., an image), LIME systematically perturbs x
to obtain a set of artificial images from the nearby areas of x in
the feature space (see x′ and x′′ in Figure 2). Then, LIME feeds the

Highest coefficients attaching to 3 most important features
Figure 2: Illustrating how a Blackbox Explanation Method
works. The key idea is to use a local linear model (д, the blue
straight line) to approximate the detection boundary f near
the input instance x. Then the linearmodel canhelp to select
the key contributing features to classifying x.

artificial images to the target classifier f (x) to obtain labels, and
uses the labeled data to fit a linear regression model д(x). This
д(x) aims to approximate the small part of f (x) near the input
image in the feature space. LIME assumes that the local area of the
classification boundary near the input instance is linear, and thus it
is reasonable to use a linear regression model to locally represent
the classification decision made by f (x). Linear regression is self-
explanatory, and thus LIME can pinpoint important features based
on the regression coefficients. A recent work SHAP [34] tries to
extend LIME by adding weights to the artificially generated data
samples. Other works propose to use other linear models (e.g.,
decision tree [6] and decision set [31]) to incrementally approximate
the target detection boundaries.

As a side note, we want to clarify that machine learning expla-
nation is completely different from feature selection methods such
as Principal Component Analysis (PCA) [26], Sparse Coding [39]
or Chi-square Statistics [49]. Explanation methods aim to identify
the key features of a specific input instance x to specifically explain
how an instance x is classified. On the other hand, feature selection
methods such as PCA are typically applied before training on the
whole training data to reduce the feature dimension (to speed up
the training or reduce overfitting), which cannot explain how a
specific classification decision is made.

3 EXPLAINING SECURITY APPLICATIONS
While deep learning has shown a great potential to build security
applications, the corresponding explanation methods are largely
falling behind. As a result, the lack of transparency reduces the trust.
First, security practitioners may not trust the deep learning model
if they don’t understand how critical decisions are made. Second,
if security practitioners cannot troubleshoot classification errors
(e.g., errors introduced by biased training data), the concern is that
these errors may be amplified later in practice. In the following, we
introduce two key security applications where deep learning has re-
cently achieved success. Then we discuss why existing explanation
methods are not applicable to the security applications.



Explanation Method Support
RNN/MLP

Local
Non-linear

Support
Blackbox Representative Works

Whitebox method (forward) G# # G# Occlusion [17, 32, 74, 76], AI2 [19],
Whitebox method (backword) G# # # Saliency Map [3, 54, 57], Grad-carm [50], DeepLIFT [53]
Blackbox method G# #  LIME [45], SHAP [34], Interpretable Decision Set [31]
Our method LEMNA    LEMNA

Table 1: Design space of explainable machine learning for security applications ( =true; #=false; G#=partially true).

3.1 Deep Learning in Security Applications
In this paper, we focus on two important classes of security appli-
cations: binary reverse engineering and malware classification.
Binary Reverse-Engineering. The applications of deep learning
in binary analysis include identifying function boundaries [52],
pinpointing the function type signatures [15] and tracking down
similar binary code [71]. More specifically, using a bi-directional
RNN, Shin et al. improve the function boundary identification and
achieve a nearly perfect performance [52]. Chua et al. also use RNN
to accurately track down the arguments and types of functions in
binaries [15]. More recently, Xu et al. employ an MLP to encode a
control flow graph to pinpoint vulnerable code fragments [71].
Malware Classification. Existing works mainly use MLP models
for large-scale malware classifications. For example, researchers
have trained MLP to detect malware at the binary code level [48] and
classify Android malware [2, 21]. More recently, Wang et al. [68]
propose an adversarial resistant neural network for detecting mal-
ware based on audit logs [7].

A key observation is that RNN and MLP are more widely adopted
by these security applications compared to CNN. The reason is that
RNN is designed to handle sequential data, which performs excep-
tionally well in processing the long sequences of binary code. Partic-
ularly, Bi-directional RNN can capture the bi-directional depen-
dencies in the input sequences between each hex [52]. For malware
classification, MLP is widely used for its high efficiency. On the other
hand, CNN performs well on images since it can take advantage
of the grouping effect of features on the 2D images [30]. These
security applications do not have such “matrix-like” data structures
to benefit from using CNN.

3.2 Why Not Existing Explanation Methods
There are key challenges to directly apply existing explanation
methods to the security applications. In Table 1, we summarize the
desired properties, and why existing methods fail to deliver them.
Supporting RNN and MLP. There is a clear mismatch between
the model choices of the above security applications and existing ex-
planationmethods. Most existing explanationmethods are designed
for CNN to work with image classifiers. However, as mentioned in
§3.1, security applications of our interests primarily adopt RNN or
MLP. Due to model mismatches, existing explanation methods are
not quite applicable. For example, the back-propagation methods
including “saliency map” [3, 18, 54, 57] and activation difference
propagation [53] require special operations on the convolutional
layers and pooling layers of CNN, which do not exist in RNN or MLP 1.

1[15] presents some case studies using saliency map to explain RNN, but is forced to
ignore the feature dependency of RNN, leading to a low explanation fidelity.

×
××

×

× LIME

(a) Linear regression model.

Best component

(b) Mixture regression model.

Figure 3: Approximating a locally non-linear decision
boundary. The linear regression model (a) can easily make
mistakes; Ourmixture regressionmodel (b) achieves a more
accurate approximation.

Blackbox methods such as LIME do not support RNN well either
(validated by our experiments later). Methods like LIME assume
features are independent, but this assumption is violated by RNN
which explicitly models the dependencies of sequential data.
Supporting Locally Non-linear Decision Boundary. Most ex-
isting methods (e.g., LIME) assume the local linearity of the decision
boundary. However, when the local decision boundary is non-linear,
which is true for most complex networks, those explanation meth-
ods would produce serious errors. Figure 3a shows an example
where the decision boundary around x is highly non-linear. In
other words, the linear part is heavily restricted to a very small
region. The typical sampling methods can easily hit the artificial
data points beyond the linear region, making it difficult for a linear
model to approximate the decision boundary near x. Later in our
experiments (§ 5), we confirm that a simple linear approximation
will significantly degrade the explanation fidelity.
SupportingBlackbox Setting.Although bothwhitebox and black-
boxmethods have their application scenarios, blackboxmethods are
still more desirable for security applications. Noticeably, it is not un-
common for people to use pre-trainedmodels (e.g., “Bi-directional
RNN” [52], “prefix tree” in Dyninst [5]) where the detailed net-
work architecture, parameters or training data are not all available.
Even though a few forward propagation methods can be forced
to work under a blackbox setting (by giving up the observations
of intermediate layers), it would inevitably lead to performance
degradation.
Summary. In this paper, we aim to bridge the gaps by develop-
ing dedicated explanation methods for security applications. Our
method aims to work under a blackbox setting and efficiently sup-
port popular deep learning models such as RNN, MLP, and CNN. More
importantly, the method need to achieve a much higher explanation
fidelity to support security applications.



4 OUR EXPLANATION METHOD
To achieve the above goals, we design and develop LEMNA. At the
high-level, we treat a target deep learning classifier as a blackbox
and derive explanation through model approximation. In order to
provide a high fidelity explanation, LEMNA needs to take a very
different design path from existing methods. First, we introduce
fused lasso [64] to handle the feature dependency problems that are
often encountered in security applications and RNN (e.g., time series
analysis, binary code sequence analysis). Then, we integrate fused
lasso into amixture regressionmodel [28] to approximate locally non-
linear decision boundaries to support complex security applications.
In the following, we first discuss the insights behind the design
choices of using fused lasso and mixture regression model. Then,
we describe the technical details to integrate them into a single
model to handle feature dependencies and locally nonlinearity at
the same time. Finally, we introduce additional steps to utilize LEMNA
to derive high-fidelity explanations.

4.1 Insights behind Our Designs

Fused Lasso. Fused lasso is a penalty term commonly used for
capturing feature dependencies, and is useful to handle the depen-
dent features in deep learning models such as RNN. At the high-level,
“fused lasso” forces LEMNA to group relevant/adjacent features to-
gether to generate meaningful explanations. Below, we introduce
the technical details of this intuition.

To learn a model from a set of data samples, a machine learning
algorithm needs to minimize a loss function L( f (x),y) that defines
the dissimilarity between the true label and the predicted label by
the model. For example, to learn a linear regression model f (x) =
βx + ϵ from a data set with N samples, a learning algorithm needs
to minimize the following equation with respect to the parameter
β using Maximum Likelihood Estimation (MLE) [38].

L( f (x),y) =
N∑
i=1
∥βxi − yi ∥ . (1)

Here, xi is a training sample, represented by anM-dimensionality
feature vector (x1,x2, · · · ,xM )T . The label of xi is denoted as yi .
The vector β = (β1, β2, · · · βM ) contains the coefficients of the lin-
ear model. ∥ · ∥ is the L2-norm measuring the dissimilarity between
the model prediction and the true label.

Fused lasso is a penalty term that can be introduced into any
loss functions used by a learning algorithm. Take linear regression
for example. Fused lasso manifests as a constraint imposed upon
coefficients, i.e.,

L( f (x),y) =
N∑
i=1
∥βxi − yi ∥ ,

subject to
M∑
j=2
∥βj − βj−1∥ ≤ S .

(2)

Fused lasso restricts the dissimilarity of coefficients assigned to ad-
jacent features within a small threshold S (i.e., a hyper-parameter)
when a learning algorithm minimizes the loss function. As a re-
sult, the penalty term forces a learning algorithm to assign equal
weights to the adjacent features. Intuitively, this can be interpreted

as forcing a learning algorithm to take features as groups and then
learn a target model based on feature groups.

Security applications, such as time series analysis and code se-
quence analysis, often need to explicitly model the feature depen-
dency of sequential data using RNN. The resulting classifier makes
a classification decision based on the co-occurrence of features. If
we use a standard linear regression model (e.g., LIME) to derive
an explanation, we cannot approximate a local decision boundary
correctly. This is because a linear regression model cannot capture
feature dependency and treat them independently.

By introducing fused lasso in the process of approximating local
decision boundary, we expect the resulting linear model to have
the following form:

f (x) = β1x1 + β2 (x2 + x3) + β3 (x4 + x5) + · · · + βkxM , (3)
where features are grouped together and thus important features
are likely to be selected as a group or multiple groups. Explicitly
modeling this process in LEMNA helps to derive a more accurate
explanation, particularly for the decision made by an RNN. We fur-
ther explain this idea using an example of sentiment analysis in
Figure 1b. With the help of fused lasso, a regression model would
collectively consider adjacent features (e.g., words next to each
other in a sentence). When deriving the explanations, our model
does not simply yield a single word “not”2, but can accurately cap-
ture the phrase “not worth the price” as the explanation for the
sentiment analysis result.
Mixture Regression Model. A mixture regression model allows
us to approximate locally nonlinear decision boundaries more ac-
curately. As shown in Figure 3b, a mixture regression model is a
combination of multiple linear regression models, which makes it
more expressive to perform the approximation:

y =
K∑
k=1

πk (βkx + ϵk ) , (4)

where K is a hyper-parameter indicating the total number of lin-
ear components combined in the mixture model; πk indicates the
weight assigned to that corresponding component.

Given sufficient data samples, whether the classifier has a linear
or non-linear decision boundary, the mixture regression model
can nearly perfectly approximate the decision boundary (using a
finite set of linear models) [35]. As such, in the context of deep
learning explanation, the mixture regression model can help avoid
the aforementioned non-linearity issues and derive more accurate
explanations.

To illustrate this idea, we use the example in Figure 3. As shown
in Figure 3a, a standard linear approximation cannot guarantee the
data sampled around the input x still remain in the locally linear
region. This can easily lead to imprecise approximation and low-
fidelity explanations. Our method in Figure 3b approximates the
local decision boundary with a polygon boundary, in which each
blue line represents an independent linear regression model. The
best linear model for producing the explanation should be the red
line passing through the data point x. In this way, the approximation
process can yield an optimal linear regressionmodel for pinpointing
important features as the explanation.
2In sentiment analysis, “not” does not always carry negative sentiment, e.g., “not bad”.



4.2 Model Development
Next, we convert these design insights into a functional explanation
system. We introduce the technical steps to integrate fused lasso in
the learning process of a mixture regression model so that we can
handle feature dependency and decision boundary non-linearity at
the same time. Technically speaking, we need to derive a mixture
regression model by minimizing the following equation

L( f (x),y) =
N∑
i=1
∥ f (xi ) − yi ∥ ,

subject to
M∑
j=2
∥βk j − βk (j−1) ∥ ≤ S , k = 1, . . . ,K .

(5)

where f (·) represents the mixture regression model shown in Equa-
tion (4), and βk j indicates the parameter in the k th linear regression
model tied to its jth feature.

Different from a standard linear regression, our optimization
objective is intractable andwe cannot simply utilizeMLE to perform
minimization. To effectively estimate parameters for the mixture
regression model, we utilize an alternative approach.

First, we represent the mixture regression model in the form of
probability distributions

yi ∼
K∑
k=1

πkN (βkxi ,σ
2
k ) . (6)

Then, we treat π1:K , β1:K andσ 2
1:K as parameters3. By taking a guess

at these parameters, we initialize their values and thus perform
parameter estimation by using ExpectationMaximization (EM) [37],
an algorithm which estimates parameters by repeatedly performing
two steps – E-Step and M-Step. In the following, we briefly describe
how this EM algorithm is used in our problem. More details can be
found in Appendix-A.

In the Equation (6), yi follows a distribution which combines
K Gaussian distributions, and each of these distributions has the
mean βkxi and the variance σ 2

k . In the E-Step, we assign each of
the data samples to one of the Gaussian distributions by following
the standard procedure applied in learning an ordinary mixture
regression model. Based on the data samples assigned in the pre-
vious E-Step, we then re-compute the parameters π1:K , β1:K and
σ 2
1:K . For the parameters π1:K and σ 2

1:K , the re-computation still
follows the standard procedure used by ordinary mixture model
learning. But, for each parameter in β1:K , re-computation follows
a customized procedure. That is to compute βk by minimizing the
following equation with respect to βk

L(x ,y) =

Nk∑
i=1
∥βkxi − yi ∥ ,

subject to
M∑
j=2
∥βk j − βk (j−1) ∥ ≤ S ,

(7)

where Nk refers to the number of samples assigned to the k th com-
ponent. Here, the reason behind this re-computation customization
3π1:K indicates parameters π1, · · · , πK . β 1:K represents parameters β 1, · · · , βK .
σ 2
1:K are the parameters σ 2

1 , · · · , σ
K
1 , each of which describes the variance of the

normal distribution that ϵk follows, i.e., ϵk ∼ N (0, σ 2
k ).

is that fused lasso has to be imposed to parameters β1:K in order
to grant a mixture regression model the ability to handle feature
dependency. As we can observe, the equation above shares the
same form with that shown in Equation (2). Therefore, we can min-
imize the equation through MLE and thus compute the values for
parameters β1:K .

Following the standard procedure of EM algorithm, we repeat-
edly perform the E-step and M-Step. Until stability is reached (i.e.,
the Gaussian distributions do not vary much from the E-step to
the M-step), we output the mixture regression model. Note that
we convert σ 2

1:K into the model parameter ϵ1:K by following the
standard approach applied in ordinary mixture model learning.

4.3 Applying the Model for Explanation
With the enhanced mixture regression model, we now discuss how
to derive high-fidelity explanations for deep learning classifiers.
Approximating Local Decision Boundary. Given an input in-
stance x, the key to generate the explanation is to approximate the
local decision boundary of the target classifier. The end product is
an “interpretable” linear model that allows us to select a small set of
top features as the explanation. To do so, we first synthesize a set of
data samples locally (around x) following the approach described
in [45]. The idea is to randomly nullify a subset of features of x.

Using the corpus of synthesized data samples, we then approxi-
mate the local decision boundary. There are two possible schemes:
one is to train a single mixture regression model to perform multi-
class classification; the other scheme is to train multiple mixture
regression models, each of which performs binary classification.
For efficiency considerations, we choose the second scheme and
put more rigorous analysis to the Appendix-B.
Deriving Explanations. Given the input data instance x, and its
classification result y, we now can generate explanations as a small
set of important features to x’s classification. More specifically, we
obtain a mixture regression model enhanced by fused lasso. From
this mixture model, we then identify the linear component that has
the best approximation of the local decision boundary. The weights
(or coefficients) in the linear model can be used to rank features. A
small set of top features is selected as the explanation result.

Note that LEMNA is designed to simultaneously handle non-linearity
and feature dependency, but this does not mean that LEMNA cannot
work on deep learning models using relatively independent features
(e.g., MLP or CNN). In fact, the design of LEMNA provides the flexibil-
ity to adjust the explanation method according to the target deep
learning model. For example, by increasing the hyper-parameter S
(which is a threshold for fused lasso), we can relax the constraint
imposed upon parameter β1:K and allow LEMNA to better handle
less dependent features. In Section §5, we demonstrate the level of
generalizability by applying LEMNA to security applications built on
both RNN and MLP.

5 EVALUATION
In this section, we evaluate the effectiveness of our explanation
method on two security applications: malware classification and
binary reverse engineering. This current section focuses evaluating
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Figure 4: Applying LEMNA to explain binary function start. 83
is the real function start, and 0.99 is the output probability
of the RNN classifier. By sending the tuple (hex-sequence, 83)
to LEMNA, our system explains the classification decision by
color-coding the most important hex. Feature importance
decreases from red to yellow.
on the accuracy of the explanation through a series of fidelity met-
rics. In the next section (§6), we will present practical use cases of
LEMNA to understand classifier behavior, troubleshoot classification
errors, and patch the errors of the classifiers.

5.1 Experimental Setup
We apply LEMNA to two security applications: detecting the “func-
tion start” for reverse-engineering binary code using RNN, and clas-
sifying PDF malware based on MLP. Below, we introduce details
about the two security applications, the implementation of LEMNA,
and the comparison baselines.
Binary Reverse-Engineering. Binary code reverse-engineering,
which transfers binary code to assembly code, is a crucial step in (1)
examining and detecting malware [51], (2) hardening the security
of software [75], and (3) generating security patches [56]. For years,
binary analysis is primarily done manually by experienced secu-
rity analysts. Recently, researchers show that well-trained RNN can
help handle critical reverse-engineering steps such as detecting the
function start [52], which can significantly save human efforts. Con-
sidering the importance of detecting function start (i.e., all binary
code reverse-engineering requires knowing the function start), we
choose this application to test LEMNA.

We follow [52] to build a RNN based on a widely used dataset
that contains 2200 binaries [5]. We compile these binaries under
x86 architecture and gcc compiler with four different optimization
levels O0, O1, O2, and O3 respectively. This produces 4 training
datasets, one for each optimization level. Like [52], we use the
bi-directional RNN and train 4 different classifiers.

Each binary in the dataset is presented as a sequence of hex
code. As shown in Figure 4, we first transfer the hex code to their
decimal values, and treat each element in the sequence as a feature.
For training, each element in the sequence has a label of either
“a function start” or “not a function start”. As shown in Figure 4,
suppose the original binary code is “90 90 90 83 ec 4c” and the
function start is at “83”, then the label vector is (0, 0, 0, 0, 1, 0, 0).
We follow [52] to truncate very long binary sequences and set
the maximum length to 200. Then we feed the sequences into the
RNN. We used Keras [14] to train the model, with Theano [63] as a
backend. We split the dataset randomly using 70% of the samples
for training, and the rest 30% for testing.

Application Binary Function Start PDF Malware
O0 O1 O2 O3

Precision 99.99% 99.65% 98.57% 99.53% 99.12%
Recall 99.97% 99.49% 98.81% 99.06% 98.13%

Accuracy 99.99% 99.99% 99.99% 99.99% 98.64%
Table 2: Classification accuracy of the trained classifiers.

As shown in Table 2, the detection accuracy is extremely high,
with a 98.57% or higher precision and recall for all cases. The results
are comparable to those reported in [52]. The hyper-parameters of
the RNNs can be found in the Appendix-C.
PDF Malware Classifier. We follow [21, 48] to construct a MLP-
based malware classifier based on a widely used dataset (4999 ma-
licious PDF files and 5000 benign files) [55]. We follow [55, 58]
to extract 135 features for each file. The features were manually
crafted by researchers based on the meta-data and the structure of
the PDF, such as number of object markers and number of javascript
markers. The full feature list can be found in the Mimicus [1]. We
follow the standard method to transform the feature values into
a binary representation [41] (i.e., nonzero feature values are con-
verted to 1), which helps avoid certain high-value features skewing
the training process. Like before, we randomly select 70% of the
datasets (malware and benign 1:1) as the training data, and use
the remaining 30% as the testing data. As shown in Table 2, our
precision and recall are both above 98.13%, which are similar to [55].
LEMNA Implementation. We treat the above RNN and MLP as the
target classifiers to run LEMNA. Given an input instance, LEMNA ap-
proximates the target classifier and explain the classification result.
“Explanations” are presented as the most important features for the
given input. For the malware classifier, LEMNA outputs a small set
of top features that explains why a file is (not) a malware. For the
“function start” detector, an example is shown in Figure 4. Given
an input hex sequence and the detected function start (i.e., “83”),
LEMNA marks out a small set of hex code in the sequence that has
the biggest contribution. Here, “83” is the function start, and LEMNA
points out that the hex code “90” before the function start is the
most important reason of the detection.

LEMNA has 3 hyper-parameters that are configurable. First, to
approximate the local decision boundary, we set to craft N data
samples for the model fitting (see §4). The second and third param-
eters are the number of mixture components K , and the threshold
of the fused lasso S . For binary function start detection, we set
parameters as: N=500, K=6, S=1e − 4. For malware classification,
we set parameters as: N=500, K=6, S=1e4. Note that the parame-
ter S is set very differently because malware analysis features are
relatively independent, while the binary analysis features have a
high dependency level. We fix these parameters to run most of
our experiments. Later, we have a dedicated section to perform
sensitivity tests on the parameter settings (which shows LEMNA is
not sensitive to these hyper-parameters).
LEMNA’s Computational Costs. The computational costs of LEMNA
are relatively low. For both security applications, the time to gener-
ate the explanation for a given instance is about 10 seconds. This
computation task further benefits from parallelization. For example,
using a server with Intel Xeon CPU E5-2630, one Nvidia Tesla K40c



(a) Input Image. (b) Explanation. (c) Deduc. test. (d) Augme. test. (e) Synthet. Test.

Figure 5: We use an image classifier as an toy example to explain
the fidelity test. Figure 5a is the original input image (“sweater”).
Figure 5b is the explanation produced by LEMNA where important
features (pixels) are highlighted in red. Figure 5c–5e are three test-
ing instances we generated to test the fidelity of the explanation.

GPU and 256G RAM, it takes about 2.5 hours to explain all 25, 040
binary testing sequences for O0 with 30 threads.
Comparison Baselines. We use two baselines for comparison.
First, we use the state-of-the-art blackbox method LIME [45] as
our comparison baseline. LIME [45] has been used to explain im-
age classifiers and NLP applications. Its performance on security
applications and RNN is not yet clear4. For a fair comparison, we
also configure LIME with N=500 which is the number of artificial
samples used to fit the linear regression model. Second, we use a
random feature selection method as the baseline. Given an input,
the Random method selects features randomly as the explanation
for the classification result.

5.2 Fidelity Evaluation
To validate the correctness (fidelity) of the explanation, we conduct
a two-stage experiment. In the first stage, we directly examine the
accuracy of our local approximation with respect to the original
decision boundary. This is likely to give an initial estimation of
the explanation accuracy. In the second stage, we perform end-to-
end evaluation on the explanation fidelity. We design three fidelity
tests to show whether the selected features are indeed the main
contributors to the classification results.
Evaluation 1: Local Approximation Accuracy. This metric is
directly computed by comparing the approximated decision bound-
ary and the original one. We measure Root Mean Square Error

(RMSE): RMSE =

√∑n
i=1 (pi−p̂i )

n , where pi represents a single pre-
diction obtained from a target deep learning classifier, p̂i denotes
the approximated prediction obtained from the explanation method,
and n is the total number of testing data samples. More specifically,
we start from a given classifier and a set of testing data samples.
For each testing data sample xi , we first obtain a prediction prob-
ability pi using the classifier. Then for xi , we follow Equation (6)
to generate a regression model, which can produce an estimated
prediction probability p̂i . After running these steps for all n testing
samples, we obtain a prediction vector P = (p1,p2, ...,pn ) and the
corresponding approximation vector P̂ = (p̂1, p̂2, ..., p̂n ). Finally, we
computer RMSE based on the two vectors. A lower RMSEmeans the
approximated decision boundary (P̂) is closer to the true boundary
(P), indicating a higher fidelity of explanation.
Evaluation 2: End-to-end Fidelity Tests. To validate the correct-
ness of the selected features, we design three end-to-end fidelity
tests. To help readers to understand the testing process, we use
4We have tested SHAP [34], which is an extension of LIME. We find that SHAP is very
slow and its performance is worse than LIME for our applications.

“image classifier” as a toy example5. The procedure works in the
same way for other classifiers. As shown in Figure 5, the image
classifier is trained to classify “shoe” from “sweater”. Figure 5a is
the input image (x) with the label as “sweater”. In Figure 5b, the
explanation method explains the reasons for the classification by
highlighting important pixels (features) in red. We denote the se-
lected features as Fx. To test the fidelity of the explanation, we have
three intuitions:
• If features Fx are accurately selected, then removing Fx from
the input x will lead to classifying this image to a different
label, i.e., “shoe” (Figure 5c).
• If features Fx are accurately selected, then adding the fea-
ture values of Fx to an image of “shoe” is likely to lead to a
misclassification, i.e., classifying it as a “sweater” (Figure 5d).
• If features Fx are accurately selected, we can craft a synthetic
images that only contains the features in Fx, and this syn-
thetic image is likely to be classified as “sweater” (Figure 5e).

Using these intuitions, we construct 3 different fidelity tests
to validate the selected features. More formally, given an input
instance x and its classification label y, LEMNA identifies a small set
of important features (Fx) as the “explanation”. We then follow the
steps below to generate 3 testing samples t(x)1, t(x)2 and t(x)3 for
feature validation:
• Feature Deduction Test: we construct a sample t(x)1 by
nullifying the selected features Fx from the instance x.
• Feature Augmentation Test: we first select one random
instance r from the opposite class (i.e., as long as r ’s label
is not y). Then we construct t(x)2 by replacing the feature
values of the instance r with those of Fx.
• Synthetic Test: we construct t(x)3 as a synthetic instance.
We preserve the feature values of the selected features Fx
while randomly assigning values for the remaining features.

The key variable in this experiment is the number of important
features selected as the “explanation” (i.e., |Fx |). Intuitively, a larger
|Fx | may yield a better explanation fidelity, but hurts the inter-
pretability of results. We want to keep |Fx | small so that human
analysts are able to comprehend.

For each classifier, we run the fidelity tests on the testing dataset
(30% of the whole data). Given an instance x in the testing dataset,
we generate 3 samples, one for each fidelity test. We feed the 3
samples into the classifier, and examine the positive classification
rate (PCR). PCR measures the ratio of the samples still classified as
x’s original label. Note that “positive” here does not mean “malware”
or “function start”. It simply means the new sample is still classified
as the x’s original label. If the feature selection is accurate, we
expect the feature deduction samples return a low PCR, the feature
augmentation samples return a high PCR, and the synthetic testing
samples return a high PCR.

5.3 Experimental Results
Our experiments show that LEMNA outperforms LIME and the random
baseline by a significant margin across all fidelity metrics.
Local Approximation Accuracy. As shown in Table 3, LEMNA
has a RMSE an order of magnitude smaller than that of LIME. This
5The image is selected from the Fashion-mnist dataset [69].



Method Binary Function Start PDF malware
O0 O1 O2 O3

LIME 0.1784 0.1532 0.1527 0.1750 0.1178
LEMNA 0.0102 0.0196 0.0113 0.0110 0.0264

Table 3: TheRootMean Square Error (RMSE) of local approx-
imation. LEMNA is more accurate than LIME.
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(a) Feature Deduction test. A lower PCR reflects a higher explanation
fidelity.
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(b) Feature Augmentation test. A higher PCR reflects a higher expla-
nation fidelity.
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(c) Synthetic test. A higher PCR reflects a higher explanation fidelity.

Figure 6: Fidelity test results. y-axis denotes the positive classifi-
cation rate PCR and y-axis denote the number of selected features
NFeature by the explanation method. Due to the space limit, the re-
sults of Binary-O1 and O2 are shown in Appendix-D.

observation holds for both the malware classifier and the function
start detection. The best performing result of LIME has a RMSE
of 0.1532, which is still almost 10 times higher than the worse
performing result of LEMNA ( 0.0196). This result confirms that our
mixture regression model is able to build a much more accurate
approximation than a simple linear model. Note that this metric
is not applicable to the random baseline since the random baseline
does not construct a decision boundary.
Fidelity Tests. Figure 6a shows the results from feature deduction
test. Recall feature deduction test is to remove important features
from the input instances. A lower PCR indicates that selected fea-
tures are more important to the classification decision. By only
nullifying the top 5 features produced by LEMNA, the function start
detector drops the PCR to 25% or lower. Considering the extremely
high accuracy of the classifier (99.5%+, see Table 2), this drastic
decrease of PCR indicates the small set of features are highly im-
portant to the classification. Note that the feature nullification is
consider minor since the top 5 features only count of 2.5% of the

(N , K , S ) RMSE Deduc. test Augme. test Synthet. test
(500, 6, 1e-4) 0.0102 5.79% 93.94% 98.04%
(300, 6, 1e-4) 0.0118 5.94% 94.32% 98.18%
(500, 4, 1e-4) 0.0105 5.80% 93.71% 97.89%
(500, 6, 1e-3) 0.0114 5.83% 93.21% 97.73%
Table 4: Hyper-parameters sensitivity testing results.

200 total features in the input sequence. If we nullify the top 35
features, the PCR is dropped to almost 0.

Figure 6b shows the results of the feature augmentation test.
Recall that feature augmentation is to add the selected features of
input x to an instance of the opposite class, expecting the classifier
to produce a label of x. A higher PCR indicates the selected features
are more important to x. The results are relatively consistent with
the previous test: (1) adding a small number of top features can
flip the label of the instance in the opposite class; (2) our method
outperforms both baselines by a big margin. Noticeably, for the
PDF malware classifier, by replacing the top 5 features, 75% of the
testing cases flip their labels.

Figure 6c shows a similar trend for the synthetic test. Using our
selected features from a given x, the synthetic instances are more
likely to be labeled as x’s label. Using only 5 top features, the
synthetic instances have a 85%–90% of the chance to take x’s label,
indicating that the core patterns have been successfully captured.

Across all three tests, our LEMNA outperforms LIME and the
random baseline by a big margin. Interestingly, for the malware
classifier, LIME performs as poor as random feature selection. This
is because the feature vectors are sparse, which hurts the “smooth-
ness” of the decision boundary. LIME has a hard time to accurately
approximate the non-smooth boundary, which again validates our
design intuition. Our system is more suitable for security applica-
tions, considering that security applications require a much higher
explanation precision compared to image analysis tasks.
Sensitivity of Hyper-parameters. Finally, we test how our re-
sults would change if the parameters are set differently. We tested
a large number of parameter configurations, and find that our con-
clusions remain consistent. Due to the space limit, we summarize
key results in Table 4. The three hyper-parameters are the “number
of crafted data samples” for model fitting (N ), the “total number of
mixture components” (K), and the “threshold for fused lasso” (S).
Table 4 presents the results of the binary function start detector
on the O0 dataset. We show 4 groups of configurations where we
change one parameter at a time. For the fidelity tests, we fix the
number of selected features as 25 to calculate the PCR. The results
confirm that changing the hyper-parameters do not significantly
influence the performance of LEMNA.

6 APPLICATIONS OF ML EXPLANATION
So far, we have validated the fidelity of the explanation results.
In this section, we present practical applications of LEMNA. We
use case studies to show how the explanation results can help
security analysts to 1) establish trusts to the trained classifiers, 2)
troubleshoot classification errors, 3) and systematically patch the
targeted errors. In the following, we primarily focus on the binary
reverse-engineering application since this application domain of
deep learning is relatively new and not well-understood. We have



Cases ID Opt.-level F. Start Explanation Assembling code

C.W.H.

1 O0 55 5b 5d c3 55 89 e5 pop ebx; pop ebp; ret; push ebp; mov ebp, esp

2 O1 53 5b 90 c3 53 83 ec 18 pop ebx; nop; ret; push ebx; sub esp,0x18

3 O2 89 8d b4 26 00 00 00 00 89 c1 8b 40 0c lea esi, [esi+eiz*1+0]; mov ecx, eax

4 O3 56 90 90 90 90 56 53 nop; nop; nop; nop; push esi; push ebx

D.N.K.

5 O0 31 e9 00 f9 ff ff 31 ed 5e jmp 0xfffff900; xor ebp, ebp; pop esi

6 O1 b8 90 90 90 b8 e7 20 19 08 2d e4 20 19 08 nop; nop; nop;mov eax, 0x81920e7;sub eax, 0x81920e4

7 O2 83 83 c4 1c c3 83 ec 1c add esp, 0x1c; ret; sub esp, 0x1c

8 O3 8b 90 90 90 90 8b 44 24 04 nop; nop; nop; nop; mov eax, DWORD PTR [esp+0x4]

9 O3 55 8d bc 27 00 00 00 00 55 57 56 lea edi, [edi+eiz+0x0]; push ebp; push edi; push esi

R.F.N.
10 O0 31* e9 50 fd ff ff 31 ed 5e jmp 0xfffffd50; xor ebp, ebp; pop esi

11 O2 89* e9 85 fe ff ff 90 89 c2 31 c0 jmp 0xfffffe8a; nop; mov edx, eax; xor eax, eax

12 O3 a1* 8d b4 26 00 00 00 00 a1 d0 14 20 08 lea esi, [esi+eiz*1+0]; mov eax, ds:0x82014d0

R.F.P.
13 O1 83 0f b6 c0 c3 83 ec 1c movzx eax,al; ret; sub esp, 0x1c

14 O2 b8 8d 74 26 00 b8 01 00 00 00 lea esi, [esi+eiz*1+0x0]; mov eax, 0x1

15 O3 83 8d 74 26 00 83 ec 1c c7 04 lea esi, [esi+eiz*1+0x0]; sub esp, 0x1c

Table 5: Case study for the binary analysis (15 cases). Our explanation method ranks features and marks the most important
features as red , followed by orange , gold , yellow . We also translate the hex code to assembling code for the ease of
understanding. Note that the F. start refers to the function start detected by the deep learning classifier. The function start
is also marked by a black square in the hex sequence. *For false negatives under R.F.N., we present the real function start that
the classifier failed to detect, and explain why the function start is missed.

performed the same analysis for the PDF malware classifier, and
the results are in Appendix-E.

6.1 Understanding Classifier Behavior
The primary application of our explanation method is to assess
the reliability of the classifiers and help to establish the “trust”. We
argue that classifier reliability and trusts do not necessarily come
from a high classification accuracy on the training data. Often
cases, the training data is not complete enough to capture all the
possible variances. Instead, trusts are more likely to be established
by understanding the model behavior. In this section, we examine
two key directions to understand how classifier makes decisions:
(1) capturing and validating “golden rules” and well-established
heuristics; and (2) discovering new knowledge.
Capturing Well-known Heuristics (C.W.H.). A reliable classi-
fier should at least capture the well-known heuristics in the re-
spective application domain. For example, in the area of binary
reverse-engineering, security practitioners have accumulated a set
of useful heuristics to identify the function start, some of which are
even treated as “golden rules”. Certain “golden rules” are derived
from the specifications of the Application Binary Interface (ABI)
standards [22]. For example, the ABI requires a function to store
the old frame pointer (ebp) at the start if this function maintains a
new frame pointer. This leads to the most commonly seen prologue
[push ebp; mov ebp, esp]. Another set of well-established rules
come from mainstream compilers. For example, GNU GCC often
inserts nop instructions before a function start, which aligns the
function for architectural optimization [43].

By analyzing the explanation results, we observed strong ev-
idence that deep learning classifiers have successfully captured
well-known heuristics. In Table 5, we show 4 most representative

cases, one for each classifier (or optimization level). In Case-1, the
classifier correctly detected the function start at “55”. Then our
LEMNA shows why 55 is marked as the function start by highlight-
ing the importance of features (i.e., the hex code nearby). The result
matches the well-known golden rule, namely [push ebp; mov
ebp,esp]. This suggests the classifiers are making decisions in a
reasonable way. Similarly, Case-2 captures the function start “53”
right after a “c3”. This corresponds to a popular heuristic intro-
duced by compilers as compilers often make a function exit in the
end through a “ret” instruction (particularly at the O0 and O1 level).

In Case-4, “83” is the function start and LEMNA highlighted the
“90” in red. This indicates that the classifier follows the “ nop right
before a function start” rule, which is caused by compilers padding
“nop”s prior to aligned functions. Similarly, in Case-3, LEMNA high-
lighted padding instruction [lea esi,[esi+eiz*1+0]], which is
another pattern introduced by compilers. Overall, LEMNA shows that
well-known heuristics are successfully captured by the classifiers.

During our analysis, we observe that well-known heuristics are
widely applicable at the lower optimization levels (O0, O1), but do
not cover as many binaries at the higher levels (O2, O3). For example,
95% of the functions at O0-level start with [55 89 E5], matching
the heuristics of Case-1. 74% of the O1-optimized functions have
ret as the ending instruction (Case-2). On the contrary, only 30%
of the binary functions at the O2 or O3 level match the well-known
heuristics, e.g., padding instructions at the function end (“[90 90
90 90]”, “[8d b4 26 00 00 00 00]”. This makes intuitive sense
because the higher-level optimization would significantly diversify
the code structure, making golden rules less effective.
Discovering New Knowledge (D.N.K.). In addition to matching
well-known heuristics, we also examine if the classifiers have picked



up new heuristics beyond existing knowledge. For security applica-
tions, we argue that the new heuristics need to be interpretable by
domain experts. In the domain of binary analysis, many potentially
useful heuristics are specific to individual functions, and it is hard to
summarize all of them manually. For example, the utility functions
inserted by the linker often have unique beginning code segments
and those segments rarely appear elsewhere (e.g., the _start func-
tion always start with [xor ebp, ebp; pop esi]). Manually
organizing such rules are not practical. However, these rules, once
derived by LEMNA, would make intuitive sense to domain experts.

As shown in Table 5, we analyze the explanation results and
find that classifiers indeed learned new knowledge. We select five
representative cases (ID 5–9). Case-5 shows that “31” is detected
as the function start because of the subsequent [ed 5e]. “ [31 ed
5e]” corresponds to the start of utility function _start (namely
[xor ebp, ebp; pop esi]). This illustrates that our explanation
method can help summarize unique prologues pertaining to special
functions. Note that the function start “31” itself is not necessarily
an important indicator. In fact, “31” represents an opcode (xor) that
often appears in the middle of the functions. It is “[ed 5e]” that
leads to the correct detection.

Case-6 illustrates another interesting pattern where “2b” is the
most important feature to detect the function start at “b8”. “2b”
resides in instruction following the pattern [mov eax, CONS1;
sub eax, CONS2]where CONS1 and CONS2 are constant values and
CONS1 - CONS2 = 0 or 3. This pattern appears only in the pro-
logues of “register_tm_clones” and “deregister_tm_clones”,
which are utility functions for transactional memory. Again this is
a function-specific pattern to detect function start.

Case-7, Case-8 and Case-9 all have some types of “preparations”
at the function start. In Case-7, “[83, ec]” is marked as the most
important feature, which corresponds to the instruction [sub esp,
0x1c]. Instructions of this form are frequently used at function
start to prepare the stack frame. For Case-8, [mov eax, DWORD
PTR [esp+0x4]] is marked as the most indicative feature. This
instruction is usually inserted to fetch the first argument of a func-
tion. Note that “04” has the red color, which is because “04” is used
as the offset for [esp+0x4] to fetch the argument of the function.
If this offset is of a different value, this instruction would not nec-
essarily be an indicator of the function start. For Case-9, it starts
with preserving the registers that are later modified ([push ebp;
push edi; push esi]). Preservation of those registers, which is
required by the calling convention (a common ABI standard), also
frequently appears at the function start.

Overall, LEMNA validates that the classifiers’ decision-making has
largely followed explainable logics, which helps to establish the
trust to these classifiers.

6.2 Troubleshooting Classification Errors
The deep neural networks, although highly accurate, still have er-
rors. These errors should not be simply ignored since they often in-
dicate insufficient training, which may be amplified in practice (due
to the biased training). Our explanation method seeks to provide
insights into “what caused the error” for a given misclassification.

By inspecting the reason of errors, we seek to provide actionable
guidelines for targeted error correction.
Reasons for False Negatives (R.F.N.). For the binary analysis
application, the classifiers would occasionally miss the real func-
tion start. As shown in Table 5 (under “R.F.N.”), given a false neg-
ative, we explain “why the real function start is not classified as
a function start”. Specifically, we feed the tuple (Code-sequence,
Real-function-start) into LEMNA, and the red-colored features
are the reasons for not recognizing the function start. For example,
in Case-10, “[50 fd]” is marked as the main reason, which cor-
respond to “[jmp 0xfffffd50]”. This instruction almost always
appears in the middle of routines or functions, which misleads the
classifier to think the substantial 31 is not a function start. This is
an outlier case because this “[50 fd]” happens to be the last in-
struction of a special region .plt, which is followed by the _start
function. Case-11 and Case-12 are mis-classified due to instructions
“[mov edx,eax]” and “[mov eax,ds:0x82014d0]”, which often
appear in the middle of functions.
Reasons for False Positives (R.F.P.). Table 5 also show examples
where the classifier picked the wrong function start. Here, we feed
the tuple (Code-Sequence, Wrong-function-start) into LEMNA
to explain why the wrong function start is picked. For example,
Case-13 highlighted “c3” in red which represents the “ret” instruc-
tion. Typically, “ret” is located at the end of a function to make
the exit, which makes the next byte “83” a strong candidate for the
function start. However, Case-13 is special because “ret” is actu-
ally placed in the middle of a function for optimization purposes.
Case-14 and Case-15 are both misled by the padding instruction
[lea esi,[esi+eiz*1+0x0]] which is often used to align func-
tions. However, in both cases, this padding instruction is actually
used to align the basic blocks inside of the function.

Overall, LEMNA shows that the errors are largely caused by the
fact that the misleading patterns are dominating over the real indica-
tors. To mitigate such errors, we need to pinpoint the corresponding
areas in the feature space and suppress the misleading patterns.

6.3 Targeted Patching of ML Classifiers
Based on the above results, we now develop automatic procedures
to convert the“insights” into actions to patch the classifiers.
Patching Method. To patch a specific classification error, our idea
is to identify the corresponding parts of the classifier that are under-
trained. Then we craft targeted training samples to augment the
original training data. Specifically, given a misclassified instance,
we apply LEMNA to pinpoint the small set of features (Fx ) that cause
the errors. Often cases, such instances are outliers in the training
data, and do not have enough “counter examples”. To this end, our
strategy is to augment the training data by adding related “counter
examples”, by replacing the feature values of Fx with random values.

We use an example (Case-10 in Table 5) to describe the patching
procedure. The classifier missed the function start due to “[50 fd]”,
a hex pattern that often exists in the middle of a function. Ideally,
the classifier should have picked up the other pattern “[31 ed 5e]”
to locate the function start. Unfortunately, the impact of the wrong
pattern is too dominating. To this end, we can add new samples
to reduce the impact of the misleading features (“[50 fd]”) and



Application Num. of kn kp Before After
Samples FN FP FN FP

Binary O0 4,891,200 5 5 3 1 0 0
Binary O1 4,001,820 3 4 48 33 23 29
Binary O2 4,174,000 4 5 107 129 59 62
Binary O3 5,007,800 2 5 83 41 15 39
PDF Malware 3,000 6 15 28 13 10 5

Table 6: Classification result before and after patching. kn
(kp ) referes to the number of augmented samples generated
for each false negative (false positive). Note that for function
start detection, the number of samples refers to the number
of total hex code in the testing set.

promote the right indicator (“[31 ed 5e]”). The new samples are
generated by replacing the hex value of “[50 fd]” with random
hex values. By adding the new samples to the training data, we
seek to reduce the errors in the retrained classifier.
Evaluation Results. To demonstrate the effectiveness of patching,
we perform the above procedure on all 5 classifiers. For each false
positive and false negative, we generate kp and kn new samples
respectively. Note that kp and kn are not necessarily the same, but
they both need to be small. After all, we want to patch the targeted
errors without hurting the already high accuracy of the classifiers.
Consistently for all the classifiers, we replace the top 5 misleading
features and retrain the models with 40 epochs.

Table 6 shows the classifier performance before and after the
patching. We have tested the sensitivity of the parameters and find
the results remain relatively consistent as long as we set kp and kn
between 2 to 10 (Appendix-F). Due to the space limit, Table 6 only
presents one set of the results for each classifier. Our experiment
shows that both false positives and false negatives can be reduced
after retraining for all five classifiers. These results demonstrate
that by understanding the model behavior, we can identify the
weaknesses of the model and enhance the model accordingly.

7 DISCUSSION

Benefits v.s. Risks. LEMNA is designed to assist security analysts
to understand, scrutinize and even patch a deep learning based
security system. While designed from the defense perspective, it
might be used by an attacker to seek theweakness of a deep learning
classifier. However, we argue that this should not dilute the value of
LEMNA, and should not be a reason for not developing explanation
tools. The analogy is the software fuzzing techniques [13, 73]: while
fuzzing tools can be used by hackers to seek vulnerabilities to
exploit, the fuzzing techniques have significantly benefited the
software industry by facilitating software testing to find and fix
vulnerabilities before the software release.
Guidelines for Analyzing LEMNA’s Outputs. LEMNA outputs an
“explanation” to each testing case. To thoroughly examine a classi-
fier, developers might need to run a large number of testing cases
through LEMNA. Manually reading each case’s explanation is time-
consuming, and thus we suggest a more efficient method, which is
to group similar explanations first. In §6, we grouped explanations
that are exactly the same before picking the “most representative”

cases. In practice, developers can use any other clustering tech-
niques to group explanations as needed.
Broader Security Applications. LEMNA is evaluated using two
popular security applications. There are many other security ap-
plications such as detecting the “function end” for binary code,
pinpointing the function types and detecting vulnerable code [15,
24, 47, 52, 66]. They can also potentially benefit from LEMNA, given
that their deep learning architectures are RNN or MLP. Note that
models like CNN share some similarities with MLP, and thus LEMNA
can potentially help with related applications (e.g., image analy-
sis). Future work will explore the applicability of LEMNA in broader
application domains.
Other Deep Learning Architectures. In addition to MLP and RNN,
there are other deep learning architectures such as sequence-to-
sequence networks [4, 60], and hybrid networks [25, 36, 71]. Al-
though, these architectures primarily find success in fields such as
machine translation [4] and image captioning [25], initial evidence
shows that they have the potential to play a bigger role in secu-
rity [36, 71]. Once concrete security applications are built in the
future, we plan to test LEMNA on these new architectures.
Feature Obfuscation. LEMNA is useful when features are inter-
pretable, but this may not be true for all applications. In particular,
researchers recently proposed various methods [8, 67, 70] to obfus-
cate input features to increase the difficulty of running adversarial
attacks. Possibly because feature obfuscation often degrades classi-
fier accuracy, these techniques haven’t received a wide usage yet.
LEMNA is not directly applicable to classifiers trained on obfuscated
features. However, if the model developer has a mapping between
the raw and obfuscated features, the developer can still translate
LEMNA’s output to the interpretable features.

8 OTHER RELATEDWORK
Since most related works have been discussed in §2 and §3, we
briefly discuss other related works here.
ImprovingMachine LearningRobustness.Adeep learningmodel
can be deceived by an adversarial sample (i.e., a malicious input
crafted to cause misclassification) [61]. To improve the model re-
sistance, researchers have proposed various defense methods [9,
20, 36, 40, 67]. The most relevant work is adversarial training [20].
Adversarial training seeks to add adversarial examples to the train-
ing dataset to retrain a more robust model. Various techniques
are available to craft adversarial examples for adversarial train-
ing [11, 33, 42, 72]. A key difference between our patching method
and the standard adversarial training is that our patching is based on
the understanding of the errors. We try to avoid blindly retraining
the model which may introduce new vulnerabilities.
Mitigating the Influence of Contaminated Data. Recent re-
search has explored ways to mitigate misclassifications introduced
by contaminated training data [10, 12, 46, 65]. A representative
method is “machine unlearning” [10], which is to remove the influ-
ence of certain training data by transforming the standard training
algorithms into a summation form. A more recent work [29] pro-
poses to utilize an influence function to identify data points that
contribute to misclassification. Our approach is complementary to



existing works: we propose to augment training data to fix under-
trained components (instead of removing bad training data). More
importantly, LEMNA helps the human analysts to understand these
errors before patching them.

9 CONCLUSION
This paper introduces LEMNA, a new method to derive high-fidelity
explanations for individual classification results for security appli-
cations. LEMNA treats a target deep learning model as a blackbox and
approximates its decision boundary through a mixture regression
model enhanced by fused lasso. By evaluating it on two popular
deep learning based security applications, we show that the pro-
posed method produces highly accurate explanations. In addition,
we demonstrate howmachine learning developers and security ana-
lysts can benefit from LEMNA to better understand classifier behavior,
troubleshoot misclassification errors, and even perform automated
patches to enhance the original deep learning model.
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Figure 7: The illustration of an EM algorithm. In each iter-
ation, the algorithm first assigns each data sample to a cor-
responding Gaussian distribution obtained from the previ-
ous iteration (E-Step). Then, it re-computes theGaussian dis-
tributions based on the assignment of the data samples (M-
Step). The algorithm repeatedly perform E-Step and M-Step
until there is no change to the Gaussian distributions or the
assignment of the data samples.

APPENDIX - A. DETAIL OF EM ALGORITHM
As is specified in Section §4, we utilize EM algorithm to estimate
parameters while learning a mixture regression model enhanced
by fused lasso. Here, we provide more detail about this process.

Recall that a mixture regression model contains K components,
each of which indicates an individual linear regression model. In
the E-Step, we assign each data sample xi to a Gaussian distribu-
tion corresponding to one of the components. To achieve this, we
introduce a set of latent variables {zi1, zi2, ..., ziK }, and use it to
indicate to which distribution a data sample is assigned. Note that
we use zik = 1 to represent that the data sample xi is assigned to
the k th distribution.



Application Model Structure Activation Optimizer Learning Rate Dropout Rate Batch Size Epoch
Binary Func. Start 255-8-2 relu adam 0.001 0.5 100 100

PDFmalware 135-100-50-10-2 sigmoid adam 0.001 0.2 100 30
Table 7: The hyper-parameters of corresponding deep learning models. Here “model structure” depicts the number of layers
in the model as well as the number of units in each layer. Note that for the four model in the function start identification
application (i.e., O0-O3), we use the same set of hyper-parameters.

To compute values for latent variables, we define
p (zik = 1) = πk , (8)

and thus have the following

p (yi |xi , zi1:K ) =
K∏
k=1

[N (yi |βkxi ,σ
2
k )]

zik , (9)

whereN (yi |βkxi ,σ
2
k ) indicates the k

th Gaussian distribution with
the mean and variance equal to βkxi and σ 2

k respectively.
From the Equation (9), we can derive a likelihood function below

p (y, z |x,Θ) =
N∏
i=1

p (yi , zi1, . . . , zin |βxi ,σ 2)

=

K∏
k=1

N∏
i=1

[πkN (xi |βkxi ,σ
2
k )]

zik

=

K∏
k=1

π
nk
k

N∏
i=1

[N (xi |βkxi ,σ
2
k )]

zik

(10)

from which we can further compute the expectation of this log-
likelihood function (i.e., Q function) as follow:

Q (Θ,Θ(t ) ) =E[logp (y, z |x,Θ) |y, x,Θ(t )]

=

K∑
k=1
{nk logπk +

N∑
i=1

ẑik ·

[log( 1
√
2π

) − logπk −
1
σ 2
k

(yi − βkxi )
2]} .

(11)

Here,nk =
∑N
k=1 Ezik .Θ indicates all of the parameters. ẑik = Ezik

which can be further represented as

ˆzik =
πkN (yi |βkxi ,σ

2
k )∑K

k=1 πkN (yi |βkxi ,σ
2
k )
, i = 1, . . . ,N ,k = 1, . . . ,K ,

(12)
With the latent variables computed through the Equation (12),

we can assign each data sample to a corresponding Gaussian dis-
tribution. Then, in the M-step, we re-compute the parameters by
maximizing the aforementioned Q function with respect to each
parameter. More specifically, we can compute parameter σ 2

k and
πk by using the following equations

σ 2
k =

∑N
i=1 ẑik (yi − βkxi )

2

nk
,k = 1, 2, . . . ,K ,

πk =
nk
N
,k = 1, 2, . . . ,K .

(13)

Recall that we re-compute parameter β1:K by minimizing the
Equation (7) shown in Section §4. While it can be resolved by using
MLE, in order to improve the efficiency of resolving this equation, we
can also an alternative algorithm introduced in [64]. As is depicted

in Figure 7, we can repeatedly perform E-step and then M-step until
the parameters converge, and thus output the mixture regression
model enhanced by fused lasso.

APPENDIX - B. MULTI-CLASS VS MULTIPLE
SINGLE-CLASS APPROXIMATION
As is mentioned in Section 4.3, we choose to perform model ap-
proximation with multiple single-class approximation rather than
a single muti-class approximation. Here, we discuss the rationale
behind our choice.

As is stated in Section 4.1, the Equation (4) represents a practice
that estimates parameters for a binary classifier, in which there are
K × (2 +M ) parameters involved in the process of model learning.
For a single mixture regression model that classifies a data sample
xi into one of L categories (L > 2), the parameter βk and σ2

k no
longer represent a vector and a singular value. Rather, they denote
matrices with the dimensionality of L ×M and L × L respectively.
In the process of learning a mixture regression model, this means
that, in addition to π1:K which still represents K parameters, the
learning algorithm needs to estimate β1:K and σ2

1:K , which denote
L × K ×M and L2 × K parameters respectively.

According to learning heuristics [23, 44], the more parameters
a learning algorithm needs to estimate, the more data samples it
would typically need. Technically speaking, following the data point
sampling approach commonly used by other model induction expla-
nation techniques, we have no difficulty in synthesizing sufficient
data samples to perform model learning (i.e., parameter estimation)
reasonably well. However, the practice shows that learning a model
with a large amount of data samples typically requires substantial
amount of computation resources. Recall that for each data sample
we have to train an individual mixture regression model in order to
derive an explanation. Therefore, we select the single-class approx-
imation scheme that can yield an explanation in a more efficient
fashion, even though both of the approximation schemes could
yield model(s) representing the equally good approximation for the
corresponding local decision boundary.

APPENDIX - C. HYPER-PARAMETERS OF
TARGET DEEP LEARNING MODEL
In Table 7, we show the hyper-parameters used for training corre-
sponding deep learning models. Regarding function start detector,
we utilized a recurrent neural network in which its first, second and
output layers are an embedding layer with 256 units, a bi-directional
RNN with 8 hidden units and a softmax classifier respectively. With
respect to the application of PDF malware classification, we used a
standard MLP which contains one input layer, three hidden layers
and one output layer. The number of hidden units tied to each layer
is presented in Table 7.
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(a) Feature Deduction testing.
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(b) Feature Augmentation testing.
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(c) Synthetic testing.

Figure 8: Fidelity validation results of O1 and O2. y-axis denotes the positive classification rate PCR and y-axis denote the number
of selected features NFeature by the explanation method.

Cases ID Classifier’s Label Explanation (Important features)

C.W.H. 16 Malware F31[JavaScript]=1 F114[prod. oth]=0 F33[JS Obfu.]=1 F56[crea. uc]=0 F112[producer mis.]=0
17 Benign F114[prod. oth]=1 F112[producer mis.]=1 F31[JavaScript]=0 F33[JS Obfu.]=0, F56[crea. uc]=1

R.F.N 18 Benign F114[prod. oth]=1 F33[JS Obfu.]=0 F112[producer mis.]=1 F31[JavaScript]=0 F56[crea. uc]=1

R.F.P 19 Malware F31[JavaScript]=1 F33[JS Obfu.]=1 F114[prod. oth]=0 F56[crea. uc]=0 F112[producer mis.]=0

Table 8: Case study for PDF malware classification (4 cases). The feature 31 and 33 are related to “JavaScript Object Markers”
and “Obfuscated JavaScript Object Markers” which are indicators of “malware” files; Feature 56, 112 and 114 refer to “Creator:
Upper Case Characters”, “Differences in Producer Values”, and “Producer: Other Characters” which are indicators of “benign”
files. The feature values have been normalized to 0 or 1. We mark the most important features as red , followed by orange ,

gold , yellow .
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(a) Fixing kn = 4.
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(b) Fixing kp = 5.

Figure 9: Sensitivity tests on kn and kp .

APPENDIX - D. FIDELITY TEST FOR O1 AND O2
COMPILATION OPTIONS
Figure 8 shows the results of fidelity tests for O1 and O2 datasets.
The results are consistent with those of other classifiers.

APPENDIX - E. MALWARE CLASSIFIER CASES
Table 8 shows 4 cases studies on the PDF Malware classifier’s de-
cisions, which correspond to true positives, true negatives, false
positives and fale negatives respectively. We also present the labels
assigned by the classifier.
Catching Well-known Heuristics (C.W.H.). Case-16 classified
as a malware primarily because feature F31 and F33 are set to non-
zero values. As is shown in Table 8, these features are related to
javascript objects, which match well-known heuristics and indica-
tors of malicious PDF files. In the contrary, Case-17 has a benign

file and features related to javascripts have zero values (e.g., no
javascript code in the file).
Reasons for False Positives/Negative (R.F.P., R.F.N). Case-18
and Case-19 represents false positives and negatives. Our explana-
tion results show that the two instances are mis-classified because
they violated the well-known heuristics learned by the classifier.
For example, Case-18 is a malware that contains “ng” injected in
the javascript. As a result, the Features F31 and F33 both have a zero
value, and the classifier cannot detect this type of malware. On the
contrary, if the benign file somehow contains some javascript code
(e.g., Case-19), the classifier will incorrectly label them as malware.

APPENDIX - F. SENSITIVITY OF kn AND kp
In section §6.3, the patching method has two hyper-parameters
kn and kp . Here, we show the results of the sensitivity tests on
these two these parameters. We select the classifier trained for
binary function start detection using the O2 dataset. Our experiment
mythology is to fix one parameter and swap the other one. Then
we observe the changes of the re-trained classifier’s false positives
and false negatives. In Figure 9a, we fix kn = 4 and then set Kp =
1, 3, 5, 7, 9. In Figure 9b, we fix kp = 5 and set kn = 2, 4, 6, 8, 10.
The results show that increasing kp will reduce false positives but
may increase false negatives. On the contrary, increasing kn will
reduce false negatives but may increase false positives. The results
confirm our statements in §6.3. Targeted patching should limit to
using small kp and kn to patch the target errors while avoiding
introducing new errors. By adjusting kp and kn , security analysts
can reduce false positives and false negatives at the same time. In
§6.3 we present the selected results where the false positives and
the false negatives are relatively balanced (kn = 4 and kp = 5 for
this classifier).
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